Microglia plays an important role in the neuroinflammatory response, identified as one of the major factors in the development and progression of neurodegenerative diseases. Amburana cearensis and its bioactive compounds, including coumarin (CM), vanillic acid (VA), and amburoside A (AMB), exert antioxidant, anti-inflammatory, and neuroprotective activities, on 6-OHDA-induced neurotoxicity in rat mesencephalic cells determined by our group. The present study investigated the anti-inflammatory effect of the dry extract from A. cearensis (DEAC), CM, AMB, and VA on lipopolysaccharide- (LPS-) stimulated microglial cells and elucidated the possible molecular mechanism of action. The DEAC was characterized by HPLC-PDA (chemical markers: CM, AMB, and VA). The BV-2 microglial cell line was pretreated with increasing concentrations of DEAC, CM, AMB, or VA in the presence or absence of LPS to evaluate the toxicity and anti-inflammatory activity. The cytotoxicity of DEAC, CM, AMB, or VA on BV-2 cells was evaluated by the MTT test, the free radical scavenging activity of test drugs was investigated, and the nitric oxide (NO) production was determined using the Griess reagent, while cytokine levels were measured by ELISA. The expressions of toll-like receptor 4 (TLR-4), nuclear factor kappa B (NF-κB), MAPK members (JNK and ERK1/2), and iNOS were determined through Western blot analysis. DEAC, CM, AMB, or VA (5-100 μg/mL) did not induce any detectable cytotoxicity in BV-2 cells. All test drugs (100 μg/mL) showed free radical scavenging activity (hydroxyl and superoxide radicals); however, only DEAC, CM, and AMB (5-100 μg/mL) significantly reduced NO production. DEAC (100 μg/mL), as well as CM (50 and 100 μg/mL) and AMB (25 μg/mL), reduced at least 50% of NO produced and markedly decrease the production of TNF-α and IL-6 but they did not significantly affect IL-10 levels. Only DEAC (100 μg/mL) and AMB (25 μg/mL) reduced the expression of iNOS, and they did not affect arginase activity. DEAC (100 μg/mL) suppressed the activation of the MAPKs JNK and ERK1/2 in LPS-activated BV-2 cells but it did not suppress the expression of TLR-4 nor the phosphorylation of NF-κB. In conclusion, DEAC, CM, and AMB exerted anti-inflammatory activity in LPS-activated microglial cells as observed by the reduction in the production of inflammatory mediators and the expression of iNOS. We identified the MAPK signaling pathway as a probable mechanism of action to the anti-inflammatory effects observed.
Escherichia coli patogênica extraintestinal (ExPEC) em relação à idade e ao sexo do hospedeiro. O Mundo da
Neuroinflammation is present in the pathophysiological mechanisms of several diseases that affect the central nervous system (CNS). Microglia have a prominent role in initiating and sustaining the inflammatory process. Epiisopiloturine (EPI) is an imidazole alkaloid obtained as a by-product of pilocarpine extracted from Pilocarpus microphyllus (jaborandi) and has shown promising anti-inflammatory and antinociceptive properties. In the present study, we investigated the effects of EPI on the inflammatory response in microglial cells (BV-2 cells) induced by lipopolysaccharide (LPS) and explored putative underlying molecular mechanisms. Cell viability was not affected by EPI (1-100 μg/mL) as assessed by both LDH activity and the MTT test. Pretreatment with EPI (25, 50, and 100 μg/mL) significantly reduced the proinflammatory response induced by LPS, as observed by a decrease in nitrite oxide production and iNOS protein expression. EPI (25 μg/mL) reduced IL-6 and TNF-α production, by 40% and 34%, respectively. However, no changes were observed in the anti-inflammatory IL-10 production. Mechanistically, EPI inhibited the TLR4 expression and phosphorylation of NF-κB p65 and MAPKs (JNK and ERK1/2) induced by LPS, but no changes were observed in TREM2 receptor expression in LPS-stimulated cells. In conclusion, our data demonstrated the potent anti-inflammatory properties of EPI in microglial cells. These effects are associated with the reduction of TLR4 expression and inhibition of intracellular signaling cascades, including NF-κB and MAPKs (JNK and ERK1/2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.