Muscular dystrophies are characterized by weakness and wasting of skeletal muscle tissues. Several drugs targeting the myostatin pathway have been used in clinical trials to increase muscle mass and function but most showed limited efficacy. Here we show that the expression of components of the myostatin signaling pathway is downregulated in muscle wasting or atrophying diseases, with a decrease of myostatin and activin receptor, and an increase of the myostatin antagonist, follistatin. We also provide in vivo evidence in the congenital myotubular myopathy mouse model (knock-out for the myotubularin coding gene Mtm1) that a down-regulated myostatin pathway can be reactivated by correcting the underlying gene defect. Our data may explain the poor clinical efficacy of anti-myostatin approaches in several of the clinical studies and the apparent contradictory results in mice regarding the efficacy of anti-myostatin approaches and may inform patient selection and stratification for future trials.
X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.
ObjectivesBecause X-linked myotubular myopathy (XLMTM) is a rare neuromuscular disease caused by mutations in the MTM1 gene with a large phenotypic heterogeneity, to ensure clinical trial readiness, it was mandatory to better quantify disease burden and determine best outcome measures.MethodsWe designed an international prospective and longitudinal natural history study in patients with XLMTM and assessed muscle strength and motor and respiratory functions over the first year of follow-up. The humoral immunity against adeno-associated virus serotype 8 was also monitored.ResultsForty-five male patients aged 3.5 months to 56.8 years were enrolled between May 2014 and May 2017. Thirteen patients had a mild phenotype (no ventilation support), 7 had an intermediate phenotype (ventilation support less than 12 hours a day), and 25 had a severe phenotype (ventilation support 12 or more hours a day). Most strength and motor function assessments could be performed even in very weak patients. Motor Function Measure 32 total score, grip and pinch strengths, and forced vital capacity, forced expiratory volume in the first second of exhalation, and peak cough flow measures discriminated the 3 groups of patients. Disease history revealed motor milestone loss in several patients. Longitudinal data on 37 patients showed that the Motor Function Measure 32 total score significantly decreased by 2%. Of the 38 patients evaluated, anti–adeno-associated virus type 8 neutralizing activity was detected in 26% with 2 patients having an inhibitory titer >1:10.ConclusionsOur data confirm that XLMTM is slowly progressive for male survivors regardless of their phenotype and provide outcome validation and natural history data that can support clinical development in this population.ClinicalTrials.gov identifierNCT02057705.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.