Muscular dystrophies are characterized by weakness and wasting of skeletal muscle tissues. Several drugs targeting the myostatin pathway have been used in clinical trials to increase muscle mass and function but most showed limited efficacy. Here we show that the expression of components of the myostatin signaling pathway is downregulated in muscle wasting or atrophying diseases, with a decrease of myostatin and activin receptor, and an increase of the myostatin antagonist, follistatin. We also provide in vivo evidence in the congenital myotubular myopathy mouse model (knock-out for the myotubularin coding gene Mtm1) that a down-regulated myostatin pathway can be reactivated by correcting the underlying gene defect. Our data may explain the poor clinical efficacy of anti-myostatin approaches in several of the clinical studies and the apparent contradictory results in mice regarding the efficacy of anti-myostatin approaches and may inform patient selection and stratification for future trials.
The molecular mechanisms by which aging affects stem cell number and function are poorly understood. Murine data have implicated cellular senescence in the loss of muscle stem cells with aging. Here, using human cells and by carrying out experiments within a strictly pre-senescent division count, we demonstrate an impaired capacity for stem cell self-renewal in elderly muscle. We link aging to an increased methylation of the SPRY1 gene, a known regulator of muscle stem cell quiescence. Replenishment of the reserve cell pool was modulated experimentally by demethylation or siRNA knockdown of SPRY1. We propose that suppression of SPRY1 by age-associated methylation in humans inhibits the replenishment of the muscle stem cell pool, contributing to a decreased regenerative response in old age. We further show that aging does not affect muscle stem cell senescence in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.