Typical radical traps (galvinoxyl, TEMPO, DPPH) react with palladium hydrides, sometimes at rates competitive with those of palladium hydride catalyzed reactions that follow an insertion mechanism (for example, alkene isomerization). Thus, positive results for radical reaction tests can be misleading. The complexes with more polarizable (neutral complexes rather than cationic) and more accessible hydrides, and the less sterically protected radical traps, react faster.
Vinylic addition polynorbornenes bearing functional groups can be obtained in a versatile way by nucleophilic substitution of a halogen in new vinylic haloalkyl polynorbornenes. The latter are obtained by vinylic homo and copolymerization of norbornene and haloalkyl norbornenes catalyzed by [Ni(C 6 F 5 ) 2 (SbPh 3 ) 2 ]. This method circumvents the problem of catalyst deactivation encountered in classical copolymerizations with polar monomers. The content of substituted monomer in the copolymers is in the range 26-59%, depending on the monomer ratio in the feed. Nucleophilic substitution reactions afford polymers with ester, cyano, phenylthio, or azido groups in the same wide range of composition. Click chemistry on the azido polynorbornenes give polynorbornenes with pendant triazole groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.