With continued debate over the functional significance of adult neurogenesis, identifying an in vivo correlate of neurogenesis has become an important goal. Here we rely on the coupling between neurogenesis and angiogenesis and test whether MRI measurements of cerebral blood volume (CBV) provide an imaging correlate of neurogenesis. First, we used an MRI approach to generate CBV maps over time in the hippocampal formation of exercising mice. Among all hippocampal subregions, exercise was found to have a primary effect on dentate gyrus CBV, the only subregion that supports adult neurogenesis. Moreover, exercise-induced increases in dentate gyrus CBV were found to correlate with postmortem measurements of neurogenesis. Second, using similar MRI technologies, we generated CBV maps over time in the hippocampal formation of exercising humans. As in mice, exercise was found to have a primary effect on dentate gyrus CBV, and the CBV changes were found to selectively correlate with cardiopulmonary and cognitive function. Taken together, these findings show that dentate gyrus CBV provides an imaging correlate of exercise-induced neurogenesis and that exercise differentially targets the dentate gyrus, a hippocampal subregion important for memory and implicated in cognitive aging.hippocampus ͉ in vivo imaging ͉ cerebral blood volume ͉ angiogenesis T he hippocampal formation, a brain circuit made up of separate but interconnected subregions (1), is vital for memory function (2) and is targeted by the aging process (3). The dentate gyrus is the only hippocampal subregion that supports neurogenesis in the adult brain (4-6). Nevertheless, because neurogenesis can only be assessed in postmortem tissue, its functional significance remains undetermined. With this limitation in mind, we have explored different imaging approaches applicable to rodents and humans that might provide an in vivo correlate of neurogenesis.Although imaging radioligands designed to bind newly dividing cells is an attractive approach, positron emission tomography imaging suffers inherently poor resolution and cannot visualize the dentate gyrus. Additionally, radiolabeling newborn cells introduces potential safety concerns. For these reasons, we have focused on MRI technologies instead. Notably, a coupling has been established between neurogenesis and angiogenesis (7,8). The process of angiogenesis, in turn, gradually gives rise to the formation of new blood vessels, increasing regional microvascular density (9-12). Importantly, vascular density can be measured in vivo with imaging techniques that map regional blood volume. Numerous studies have established a tight relationship between angiogenesis and regional blood volume (13-17), including in the brain where regional angiogenesis is coupled to regional cerebral blood volume (CBV) (18)(19)(20)(21)(22)(23)(24)(25)(26).Because CBV can be measured with MRI, we hypothesized that a regionally selective increase in hippocampal CBV might provide an imaging correlate of neurogenesis. This hypothesis was tested in...
Optimal functioning of neuronal networks is critical to the complex cognitive processes of memory and executive function that deteriorate in Alzheimer’s disease (AD). Here we use cellular and animal models as well as human biospecimens to show that AD-related stressors mediate global disturbances in dynamic intra- and inter-neuronal networks through pathologic rewiring of the chaperome system into epichaperomes. These structures provide the backbone upon which proteome-wide connectivity, and in turn, protein networks become disturbed and ultimately dysfunctional. We introduce the term protein connectivity-based dysfunction (PCBD) to define this mechanism. Among most sensitive to PCBD are pathways with key roles in synaptic plasticity. We show at cellular and target organ levels that network connectivity and functional imbalances revert to normal levels upon epichaperome inhibition. In conclusion, we provide proof-of-principle to propose AD is a PCBDopathy, a disease of proteome-wide connectivity defects mediated by maladaptive epichaperomes.
Parkinson's disease is an increasingly common disease of elderly patients who present a particular anaesthetic challenge. This review explores the epidemiology, aetiology, pathogenesis, and pathophysiology of the condition, particularly the possible role of genetic factors. The clinical features are described in detail and recent advances in medical management are highlighted. Controversies surrounding the use of the newer drugs and possible advances in neurosurgical interventions are discussed. Particular anaesthetic problems in patients with Parkinson's disease are respiratory, cardiovascular, and neurological. Potential drug interactions are described and recommendations are made about suitable anaesthetic techniques.
The dementia of Alzheimer's disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat agerelated cognitive decline.cognitive aging | glutamate | riluzole | neuroplasticity | dendritic spine clustering C ognitive decline often occurs with aging in rodents (1), nonhuman primates (2), and humans (3). Memory loss (4) and executive impairment (5) are of the most functional importance, mediated primarily by the hippocampus and related areas of the medial temporal lobe and the prefrontal cortex (PFC), respectively. The neural circuits vulnerable to aging are composed of glutamatergic pyramidal neurons that furnish corticocortical connections between the association cortices as well as the excitatory hippocampal connections (2, 6). Dendritic spine changes, which appear to be the primary site of structural plasticity in the adult brain (7), occur in the pyramidal neurons of the PFC (5) and in the hippocampus (8, 9) with aging and correlate with behavioral decline. Spines form the postsynaptic component of most excitatory synapses in the cerebral cortex and are capable of rapid formation, expansion, contraction, and elimination (10, 11).Synaptic glutamatergic activity is neuroprotective and critical for long-term potentiation (LTP) and memory formation, whereas extrasynaptic NMDA receptor activity promotes longterm depression and excitotoxicity (12, 13). There is some evidence that astrocytic glutamate transporters decrease with aging (14, 15), and conse...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.