Animal tuberculosis (TB), caused by Mycobacterium bovis, is maintained in Portugal in a multi-host system, with cattle, red deer and wild boar, playing a central role. However, the ecological processes driving transmission are not understood. The main aim of this study was thus to contribute to the reconstruction of the spatiotemporal history of animal TB and to refine knowledge on M. bovis population structure in order to inform novel intervention strategies. A collection of 948 M. bovis isolates obtained during long-term surveillance (2002–2016, 15 years) of cattle (n = 384), red deer (n = 303) and wild boar (n = 261), from the main TB hotspot areas, was characterized by spoligotyping and 8 to 12-loci MIRU-VNTR. Spoligotyping identified 64 profiles and MIRU-VNTR distinguished 2 to 36 subtypes within each spoligotype, enabling differentiation of mixed or clonal populations. Common genotypic profiles within and among livestock and wildlife in the same spatiotemporal context highlighted epidemiological links across hosts and regions, as for example the SB0119-M205 genotype shared by cattle in Beja district or SB0121-M34 shared by the three hosts in Castelo Branco and Beja districts. These genomic data, together with metadata, were integrated in a Bayesian inference framework, identifying five ancestral M. bovis populations. The phylogeographic segregation of M. bovis in specific areas of Portugal where the disease persists locally is postulated. Concurrently, robust statistics indicates an association of the most probable ancient population with cattle and Beja, providing a clue on the origin of animal TB epidemics. This relationship was further confirmed through a multinomial probability model that assessed the influence of host species on spatiotemporal clustering. Two significant clusters were identified, one that persisted between 2004 and 2010, in Beja district, with Barrancos county at the centre, overlapping the central TB core area of the Iberian Peninsula, and highlighting a significant higher risk associated to cattle. The second cluster was predominant in the 2012–2016 period, holding the county Rosmaninhal at the centre, in Castelo Branco district, for which wild boar contributed the most in relative risk. These results provide novel quantitative insights beyond empirical perceptions, that may inform adaptive TB control choices in different regions.
Classical molecular analyses of Mycobacterium bovis based on spoligotyping and Variable Number Tandem Repeat (MIRU-VNTR) brought the first insights into the epidemiology of animal tuberculosis (TB) in Portugal, showing high genotypic diversity of circulating strains that mostly cluster within the European 2 clonal complex. Previous surveillance provided valuable information on the prevalence and spatial occurrence of TB and highlighted prevalent genotypes in areas where livestock and wild ungulates are sympatric. However, links at the wildlife–livestock interfaces were established mainly via classical genotype associations. Here, we apply whole genome sequencing (WGS) to cattle, red deer and wild boar isolates to reconstruct the M. bovis population structure in a multi-host, multi-region disease system and to explore links at a fine genomic scale between M. bovis from wildlife hosts and cattle. Whole genome sequences of 44 representative M. bovis isolates, obtained between 2003 and 2015 from three TB hotspots, were compared through single nucleotide polymorphism (SNP) variant calling analyses. Consistent with previous results combining classical genotyping with Bayesian population admixture modelling, SNP-based phylogenies support the branching of this M. bovis population into five genetic clades, three with apparent geographic specificities, as well as the establishment of an SNP catalogue specific to each clade, which may be explored in the future as phylogenetic markers. The core genome alignment of SNPs was integrated within a spatiotemporal metadata framework to further structure this M. bovis population by host species and TB hotspots, providing a baseline for network analyses in different epidemiological and disease control contexts. WGS of M. bovis isolates from Portugal is reported for the first time in this pilot study, refining the spatiotemporal context of TB at the wildlife–livestock interface and providing further support to the key role of red deer and wild boar on disease maintenance. The SNP diversity observed within this dataset supports the natural circulation of M. bovis for a long time period, as well as multiple introduction events of the pathogen in this Iberian multi-host system.
Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored. This work hinges current understandings of NTM, approaching their biology and heterogeneity from several angles and reinforcing the complexity of these microorganisms often associated with a multiplicity of diseases, including pulmonary, soft-tissue, or milliary. In addition to emphasizing the cornerstones of knowledge involving these bacteria, we identify research gaps that need to be addressed, stressing out the need for decision-makers to recognize NTM infection as a public health issue that has to be tackled, especially when considering an increasingly susceptible elderly and immunocompromised population in developed countries, as well as in low- or middle-income countries, where NTM infections are still highly misdiagnosed and neglected.
Animal tuberculosis (TB) in terrestrial mammals is mainly caused by Mycobacterium bovis. This pathogen is adapted to a wide range of host species, representing a threat to livestock, wildlife and human health. Disease heterogeneity is a hallmark of multi‐host TB and a challenge for control. Drivers of animal TB heterogeneity are very diverse and may act at the level of the causative agent, the host species, the interface between mycobacteria and the host, community of hosts, the environment and even policy behind control programmes. In this paper, we examine the drivers that seem to contribute to this phenomenon. We begin by reviewing evidence accumulated to date supporting the consensus that a complex range of genetic, biological and socio‐environmental factors contribute to the establishment and maintenance of animal TB, setting the grounds for heterogeneity. We then highlight the complex interplay between individual, species‐specific and community protective factors with risk/maintenance variables that include animal movements and densities, co‐infection and super‐shedders. We finally consider how current interventions should seek to consider and explore heterogeneity in order to tackle potential limitations for diagnosis and control programmes, simultaneously increasing their efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.