In this work the acid properties of a series of HZSM-12 zeolites with different Si/Al ratio were studied. The ZSM-12 crystals were synthesized by the hydrothermal method starting from a gel with the following molar composition: 20MTEA:10Na 2 O:x Al 2 O 3 :100SiO 2 :2000H 2 O, with x = 0.50, 0.67, 1, 1.25 and 2, respectively. The gels were crystallized at 140 • C for 6 days, then washed, dried and calcined to remove the MTEA template. The samples were ion-exchanged with an ammonium chloride solution and calcined again to obtain the zeolites in the acid form. The materials thus obtained were characterized by XRD, SEM, BET, TG and n-butylamine adsorption. The Si/Al ratio in the reaction mixture affects the amount of zeolite produced and the size of the particles. The XRD analysis indicated that the ZSM-12 zeolite crystallizes in a pure form only with Si/Al ratio above 33. The SEM analysis showed the presence of crystallites with very well defined prismatic shapes. The removal of the MTEA of the pores of the ZSM-12 by TG indicated that there are two kinds of internal sites occupied by MTEA inside the structure. The BET area of the ZSM-12 decreases proportionally with the crystallinity of materials. The desorption of n-butylamine showed that the acid site density is proportional to aluminum content, but the Si/Al ratio shows little influence on the relative strengths of these sites.
The variation of surface properties of SiMCM-41 and AlMCM-41 nanoporous materials as function of synthesis time was examined. The main properties studied were: surface area, pore diameter, pore volume, mesoporous parameter, and wall thickness. Siliceous MCM-41 molecular sieves were synthesized starting from hydrogels with the following molar compositions: 4.58SiO 2 :0.435Na 2 O:1 CTMABr:200 H 2 O for SiMCM-41, and 4.58SiO 2 :0.485 Na 2 O:1 CTMABr:0.038 Al 2 O 3 :200 H 2 O, for AlMCM-41. Cetyltrimethylammonium bromide (CTMABr) was used as the structural template. The crystallographic parameters were obtained from XRD data and by nitrogen adsorption using the BET and BJH methods. The results obtained showed a significant variation of the surface properties of the MCM-41 materials as a function of the synthesis time reaching silica wall thickness of ca. 2 nm on the fourth day.
The SBA-15 materials were synthesized by the hydrothermal method using tetraethyl orthosilicate as silica source and P123 as template agent. The synthesis process was accomplished varying the time during the hydrothermal processing. For the synthesis monitoring, a small amount of sample was removed at different times, and analyzed by thermal analysis in order to determine the temperature ranges related to water desorption, template decomposition and silanol condensation for the SBA-15 nanostructured materials, as well as to estimate their quality. The samples were characterized by X-ray diffraction, infrared absorption spectroscopy, scanning electron microscopy, BET surface area and pore size distribution. The activation energy relative to decomposition of P123 template was determined from TG curves, using multiple heating rates and applying the model free kinetics. From the obtained data, it is possible to monitor the hydrothermal synthesis of SBA-15 in order to control the properties and conditions to prepare ordered materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.