Background: Liquid biopsy allows the identification of targetable cancer mutations in a minimally invasive manner. In patients with advanced non-small cell lung cancer (NSCLC), droplet digital PCR (ddPCR) is increasingly used to genotype the epidermal growth factor receptor (EGFR) gene in circulating cell-free DNA (cfDNA). However, the sensitivity of this method is still under debate. The aim of this study was to implement and assess the performance of a ddPCR assay for detecting the EGFR T790M mutation in liquid biopsies.Methods: A ddPCR assay was optimized to detect the EGFR T790M mutation in plasma samples from 77 patients with NSCLC in progression.Results: Our ddPCR assay enabled the detection and quantification of the EGFR T790M mutation at cfDNA allele frequency as low as 0.5%. The mutation was detected in 40 plasma samples, corresponding to a positivity rate of 52%. The number of mutant molecules per mL of plasma ranged from 1 to 6,000. A rebiopsy was analyzed for 12 patients that had a negative plasma test and the mutation was detected in 2 cases.A second liquid biopsy was performed for 6 patients and the mutation was detected in 3 cases.Conclusions: This study highlights the value of ddPCR to detect and quantify the EGFR T790M mutation in liquid biopsies in a real-world clinical setting. Our results suggest that repeated ddPCR tests in cfDNA may obviate tissue re-biopsy in patients unable to provide a tumor tissue sample suitable for molecular analysis.
<b><i>Background and Aims:</i></b> Colorectal cancer (CRC) is a heterogeneous disease with distinctive genetic pathways, such as chromosomal instability, microsatellite instability and methylator pathway. Our aim was to correlate clinical and genetic characteristics of CRC patients in order to understand clinical implications of tumour genotype. <b><i>Methods:</i></b> Single-institution retrospective cohort of patients who underwent curative surgery for CRC, from 2012 to 2014. <i>RAS</i> and <i>BRAF</i> mutations were evaluated with the real-time PCR technique Idylla®. Mismatch repair deficiency (dMMR) was characterized by absence of MLH1, MSH6, MSH2 and/or PMS2 expression, evaluated by tissue microarrays. Overall survival (OS) and disease-free survival (DFS) were assessed using survival analysis. <b><i>Results:</i></b> Overall, 242 patients were included (males 57.4%, age 69.3 ± 12.9 years; median follow-up 49 months). <i>RAS</i>-mutated tumours were associated with reduced DFS (<i>p</i> = 0.02) and OS (<i>p</i> = 0.045) in stage I–III CRC. <i>BRAF</i>-mutated tumours were more predominant in females and in the right colon, similarly to dMMR tumours. BRAF status did not influence OS (4 years)/DFS (3.5 years) in stage I–III disease. However, after relapse, length of survival was 3.5 months in <i>BRAF</i>-mutated tumours in contrast to 18.6 months in <i>BRAF</i> wild-type tumours (<i>p</i> = NS). No germline mutations in mismatch repair genes were so far identified in the patients with dMMR tumours. Molecular phenotype (<i>RAS, BRAF</i> and MMR) did not influence OS in metastatic patients. Our small sample size may be a limitation of the study. <b><i>Conclusion:</i></b> In our cohort, <i>RAS</i>-mutated tumours were associated with worse DFS and OS in early-stage CRC, whereas the remaining molecular variables had no prognostic influence.
Background: Around 40% of ER+/HER2-breast carcinomas (BC) present mutations in the PIK3CA gene. Assessment of PIK3CA mutational status is required to identify patients eligible for treatment with PI3Kα inhibitors, with alpelisib currently the only approved tyrosine kinase inhibitor in this setting. U-PIK project aimed to conduct a ring trial to validate and implement the PIK3CA mutation testing in several Portuguese centers, decentralizing it and optimizing its quality at national level.Methods: Eight Tester centers selected two samples of patients with advanced ER+/HER2- BC and generated eight replicates of each (n = 16). PIK3CA mutational status was assessed in two rounds. Six centers used the cobas®PIK3CA mutation test, and two used PCR and Sanger sequencing. In parallel, two reference centers (IPATIMUP and the Portuguese Institute of Oncology [IPO]-Porto) performed PIK3CA mutation testing by NGS in the two rounds. The quality of molecular reports describing the results was also assessed. Testing results and molecular reports were received and analyzed by U-PIK coordinators: IPATIMUP, IPO-Porto, and IPO-Lisboa.Results: Overall, five centers achieved a concordance rate with NGS results (allele frequency [AF] ≥5%) of 100%, one of 94%, one of 93%, and one of 87.5%, considering the overall performance in the two testing rounds. NGS reassessment of discrepancies in the results of the methods used by the Tester centers and the reference centers identified one probable false positive and two mutations with low AF (1–3%, at the analytical sensitivity threshold), interpreted as subclonal variants with heterogeneous representation in the tissue sections processed by the respective centers. The analysis of molecular reports revealed the need to implement the use of appropriate sequence variant nomenclature with the identification of reference sequences (HGVS-nomenclature) and to state the tumor cell content in each sample.Conclusion: The concordance rates between the method used by each tester center and NGS validate the use of the PIK3CA mutational status test performed at these centers in clinical practice in patients with advanced ER+/HER2- BC.
Analysis of cell-free circulating tumor DNA obtained by liquid biopsy is a non-invasive approach that may provide clinically actionable information when conventional tissue biopsy is inaccessible or infeasible. Here, we followed a patient with hormone receptor-positive and human epidermal growth factor receptor (HER) 2-negative breast cancer who developed bone metastases seven years after mastectomy. We analyzed circulating cell-free DNA (cfDNA) extracted from plasma using high-depth massively parallel sequencing targeting 468 cancer-associated genes, and we identified a clonal hotspot missense mutation in the PIK3CA gene (3:178952085, A > G, H1047R) and amplification of the CCND1 gene. Whole-exome sequencing revealed that both alterations were present in the primary tumor. After treatment with ribociclib plus letrozole, the genetic abnormalities were no longer detected in cfDNA. These results underscore the clinical utility of combining liquid biopsy and comprehensive genomic profiling to monitor treatment response in patients with metastasized breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.