The zoonotic potential of giardiasis, as proposed by WHO since the late 70's, has been largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis are frequently isolated from human and canine hosts. Most of the assemblage A strains are not infective to adult mice, which can limit the range of studies regarding to biology of G. duodenalis, including virulence factors and the interaction with host immune system. This study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (AI, AII, AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis. Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage AI. The proteomic map of soluble and insoluble protein fractions led to the identification of 187 proteins of G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 proteins with catalytic activity. Some of the identified proteins correspond to antigens while others can be correlated with virulence. Besides a significant complementation to the proteomic data of G. duodenalis, these data provide an important source of information for future studies on various aspects of the biology of this parasite, such as virulence factors and host and pathogen interactions.
The aims of this study were to perform pre-surgery miRNA profiling of patients who develop Vasoplegic syndrome (VS) after coronary artery bypass grafting (CABG) and identify those miRNAs that could be used as VS prognostic tools and biomarkers. The levels of 754 microRNAs (miRNAs) were measured in whole blood samples from a cohort of patients collected right before the coronary artery bypass grafting (CABG) surgery. We compared the miRNA levels of those who developed VS (VASO group) with those who did not (NONVASO group) after surgery. Six miRNAs (hsa-miR-548c-3p, -199b-5p, -383-5p -571 -183-3p, -30d-5p) were increased and two (hsa-1236-3p, and hsa-miR770-5p) were decreased in blood of VASO compared to NONVASO groups. Receiver Operating Characteristic (ROC) curve analysis revealed that a combination of the miRNAs, hsa-miR-30d-5p and hsa-miR-770-5p can be used as VS predictors (AUC = 0.9615, p < 0.0001). The computational and functional analyses were performed to gain insights into the potential role of these dysregulated miRNAs in VS and have identified the “Apelin Liver Signaling Pathway” as the canonical pathway containing the most target genes regulated by these miRNAs. The expression of the combined miRNAs hsa-miR-30d and hsa-miR-770-5p allowed the ability to distinguish between patients who could and could not develop VS, representing a potential predictive biomarker of VS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.