Most traditional biclustering algorithms identify biclusters with no or little overlap. In this paper, we introduce the problem of identifying staircases of biclusters. Such staircases may be indicative for causal relationships between columns and can not easily be identified by existing biclustering algorithms. Our formalization relies on a scoring function based on the Minimum Description Length principle. Furthermore, we propose a first algorithm for identifying staircase biclusters, based on a combination of local search and constraint programming. Experiments show that the approach is promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.