Brazil is one of the main users of chemical pesticides in the world. These products threaten human and environmental health, and many of them are prohibited in countries other than Brazil. This paradigm exists in contrast with worldwide efforts to make the need for food production compatible with biodiversity conservation, preservation of ecosystem services, and human health. In this scenario, the development of sustainable methods for crop production and pest management such as organic agriculture and biological control are necessary. Herein, we describe how the process of registration of natural enemy-based products in organic agriculture is simpler and faster than the conventional route of chemical insecticides and can favor the development of the biological control market in Brazil. Since the regulatory mechanisms have been established in Brazil for organic agriculture, the number of biological control products registered has increased exponentially. Today, 50 companies and associations are marketing 16 species/isolates and 95 natural enemy-based products. Although this scenario presents a series of new opportunities to increase and stimulate a more sustainable agriculture in the country, biological control is not always aligned with the aims and philosophy of organic agriculture and agroecology. Therefore, we also argue that new research efforts are needed on understanding how conservation biological control strategies can be integrated with augmentation biological control to promote a sustainable agriculture under the concepts of organic agriculture and agroecology.
Chemical trails of the hosts (footprints) are important cues for the host searching behaviour of egg parasitoids of the family Scelionidae. The present study aims to determine the influence of the footprints of three neotropical stink bugs (Euchistus heros, Dichelops melacanthus and Nezara viridula) on the foraging behaviour of two parasitoids, Trissolcus basalis and Telenomus podisi, as well as a possible selective response to fooprints of their preferred hosts. Accordingly, Tr. basalis and Te. podisi females are allowed to forage on open arenas where E. heros, D. melacanthus or N. viridula had walked or on open arenas that had been treated with samples of an extract from each stink bug's footprints. Hexane extracts of stink bug footprints are obtained from solvent-washed Petri dishes where insects were allowed to walk for 24 h, and these extracts were analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Each parasitoid responds selectively to the footprints of their preferred host (Tr. basalis to footprints of N. viridula and Te. podisi to footprints of E. heros). Twenty-six compounds comprising of C18 to C35 (saturated and unsaturated) and methyl branched hydrocarbons were identified in extracts of E. heros, D. melacanthus and N. viridula, respectively. There are significant differences in the total amount of the compounds identified in the footprint stink bug's extracts and also a difference in the amounts of individual compounds. In addition, the behavioural assays showed that footprints of stink bugs are stimuli that are used by egg parasitoids to search, discriminate and selectively locate their preferred host.
In this work, we tested whether variations in temporal pattern and architecture of the vibratory signals favor signals recognition and discrimination in two stinkbug species, Chinavia ubica and C. impicticornis. To relate the level of species recognition with species-specific vibratory signal we exposed males to natural or artificial signals. Different artificial signals were synthesized by changing the basic structure or temporal parameters of typical female calling signals of each species. Signals were transmitted to bean plants and the response of males was observed and recorded by a piezoelectric accelerometer. Results show that changes in temporal patterns of artificial signals significantly reduced the proportion of males responding by emitting the male song. Our results confirm that specific elements of male vibratory signals are critical for female signal recognition and discrimination by males and could contribute to prezygotic isolation in sympatric Chinavia species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.