This study investigated the effects of different yerba mate (YM) proportions (1.5, 2.5, and 4.5 g YM/100 g whole wheat flour (WWF) and particle sizes (245, 415.5, and 623.9 µm) on dough rheological properties, antioxidant activity, and bread characteristics. The addition of YM leaves led to a possible interaction between its phenolic compounds and the gluten network within the dough, without negative effects on dough formation. However, the larger YM particle size (623.9 µm) caused a weakening of the protein network, resulting in lower quality product compared to the other samples. Improved bread quality was found when the YM leaves were added at 2.5 g YM/100 g WWF. The total amount of phenolic compounds and the antioxidant activity increased as the proportion of YM increased in both flour and bread. Moreover, the phenolic compounds in 2.5 g YM/100 g WWF breads were stable during baking, showing no significant losses in the amount of phenolic compounds and antioxidant activity.These results suggest the YM can be successfully incorporated into baked product, improving its functional characteristics.Practical Application: This study evaluates the technological quality of bakery product made by incorporating yerba mate leaves in whole wheat flour. The results will contribute to the production of a bread with greater functional properties due to the presence of polyphenols and phytochemicals.
The commercialization of fruits in the market generates a large amount of waste because they are perishable and have a short shelf life; thus, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. These fruits were collected from supermarkets in the city of Passo Fundo, Brazil, and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 359.38 mg/L. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis. HighlightsConversion of fruit sugars to bioethanol; Alternative raw material for the production of biofuels.
The commercialization of fruits in the market generates a large amount of waste because they are perishable and have a short shelf life; thus, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. These fruits were collected from supermarkets in the city of Passo Fundo, Brazil, and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 359.38 mg/L. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.