Seedling production is an important step in the lettuce production system. However, there is a tendency to apply excessive irrigation at this stage. The aim of this study was to test the use of the Simplified Irrigation Controller (SIC) under two conditions: first, with the sensor installed in the substrate (measuring the soil water tension) and second, in the atmosphere ("atmospheric" -responding to vapor demand in the atmosphere) to control the irrigation of lettuce seedlings. The performance of the SIC was evaluated by monitoring plant traits. The lettuce seeds of the Regina cultivar were sown in styrofoam trays with commercial organic substrate.Both experiments were conducted under greenhouse conditions and evaluated under different SIC activation tensions. Shoot fresh weight and dry weight, height, number of leaves, leaf length, leaf area, water use efficiency (WUE) (ratio between the dry mass of plant produced by the volume of water applied), chlorophyll content, stomatal conductance and chlorophyll a fluorescence were assessed. In the experiment with the substrate sensor, the tension of 11.5 kPa caused death in 94 % of the seedlings and was disregarded in the statistical analysis. All biometric and physiological traits evaluated decreased as the SIC tensions increased. Thus, tensions of 4.0 (substrate sensor) and 3.5 kPa (atmospheric sensor) showed greater potential for producing vigorous seedlings, with WUE average values of 1.86 and 1.37 g L -1 , respectively. Cultivation of lettuce seedlings proved viable under both conditions when the SIC was used, with the emergence of a number of practical advantages of the atmospheric sensor over the substrate one.
Setaria viridis, a genetic model for C4 monocots, has potential to provide information of relevance for plant biotechnology, contributing to an understanding of how genetic engineering can affect phenotype and agricultural production. The BBCH growth scale for the A10.1 accession of S. viridis consists of a detailed phenotypic analysis process, based on defined growth stages. Measurements of morphological attributes complementing the scale were also made, supporting the identification of growth and development stages. Phenotypic stages were grouped into three major stages of development: vegetative (BBCH 0 to 4), reproductive (BBCH 5 to 8) and senescence (BBCH 9). Observation and interpretation of the growth and development data of accessions A10.1 and Ast-1 showed that the former presents phenotypic homogeneity, which makes it suitable for the construction of the BBCH-scale and improves our understanding of the phenology of this model plant. This methodological framework facilitates the comparison of genotypes and phenotypes among natural accessions and future mutants and the study of the evolution of tolerance to abiotic stress.
The co-occurrence of biotic and abiotic stresses in agricultural areas severely affects crop performance and productivity. Drought is one of the most adverse environmental stresses, and its association with root-knot nematodes further limits the development of several economically important crops, such as cowpea. Plant responses to combined stresses are complex and require novel adaptive mechanisms through the induction of specific biotic and abiotic signaling pathways. Therefore, the present work aimed to identify proteins involved in the resistance of cowpea to nematode and drought stresses individually and combined. We used the genotype CE 31, which is resistant to the root-knot nematode Meloidogyne spp. And tolerant to drought. Three biological replicates of roots and shoots were submitted to protein extraction, and the peptides were evaluated by LC-MS/MS. Shotgun proteomics revealed 2345 proteins, of which 1040 were differentially abundant. Proteins involved in essential biological processes, such as transcriptional regulation, cell signaling, oxidative processes, and photosynthesis, were identified. However, the main defense strategies in cowpea against cross-stress are focused on the regulation of hormonal signaling, the intense production of pathogenesis-related proteins, and the downregulation of photosynthetic activity. These are key processes that can culminate in the adaptation of cowpea challenged by multiple stresses. Furthermore, the candidate proteins identified in this study will strongly contribute to cowpea genetic improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.