Background Wood-decay basidiomycetes are effective for the degradation of highly lignified and recalcitrant plant substrates. The degradation of lignocellulosic materials by brown-rot strains is carried out by carbohydrate-active enzymes and non-enzymatic Fenton mechanism. Differences in the lignocellulose catabolism among closely related brown rots are not completely understood. Here, a multi-omics approach provided a global understanding of the strategies employed by L. sulphureus ATCC 52600 for lignocellulose degradation. Results The genome of Laetiporus sulphureus ATCC 52600 was sequenced and phylogenomic analysis supported monophyletic clades for the Order Polyporales and classification of this species within the family Laetiporaceae. Additionally, the plasticity of its metabolism was revealed in growth analysis on mono- and disaccharides, and polysaccharides such as cellulose, hemicelluloses, and polygalacturonic acid. The response of this fungus to the presence of lignocellulosic substrates was analyzed by transcriptomics and proteomics and evidenced the occurrence of an integrated oxidative–hydrolytic metabolism. The transcriptomic profile in response to a short cultivation period on sugarcane bagasse revealed 125 upregulated transcripts, which included CAZymes (redox enzymes and hemicellulases) as well as non-CAZy redox enzymes and genes related to the synthesis of low-molecular-weight compounds. The exoproteome produced in response to extended cultivation time on Avicel, and steam-exploded sugarcane bagasse, sugarcane straw, and Eucalyptus revealed 112 proteins. Contrasting with the mainly oxidative profile observed in the transcriptome, the secretomes showed a diverse hydrolytic repertoire including constitutive cellulases and hemicellulases, in addition to 19 upregulated CAZymes. The secretome induced for 7 days on sugarcane bagasse, representative of the late response, was applied in the saccharification of hydrothermally pretreated grass (sugarcane straw) and softwood (pine) by supplementing a commercial cocktail. Conclusion This study shows the singularity of L. sulphureus ATCC 52600 compared to other Polyporales brown rots, regarding the presence of cellobiohydrolase and peroxidase class II. The multi-omics analysis reinforces the oxidative–hydrolytic metabolism involved in lignocellulose deconstruction, providing insights into the overall mechanisms as well as specific proteins of each step.
Enzymes isolated from extremophiles often exhibit superior performance and potential industrial applications. There are several advantages performing biocatalysis at elevated temperatures, including enhanced reaction rates, increased substrate solubility and decreased risks of contamination. Furthermore, thermophilic enzymes usually exhibit high resistance against many organic solvents and detergents, and are also more resistant to proteolytic attack. In this study, we subcloned and characterized an esterase from the hyperthermophilic archaeon Pyrococcus furiosus (Pf_Est) that exhibits optimal activity around 80 °C using naphthol-derived substrates and p-nitrophenyl palmitate (pNPP). According to the circular dichroism spectra, the secondary structure of P. furiosus esterase, which is predominantly formed by a β-sheet structure, is very stable, even after incubation at 120°C. We performed SAXS to determine the low-resolution structure of Pf_Est, which is monomeric in solution at 80 °C and has a molecular weight of 28 kDa. The Km and V values for this esterase acting on pNPP were 0.53 mmol/L and 6.5 × 10 U, respectively. Pf_Est was most active in the immiscible solvents and retained more than 50 % in miscible solvents. Moreover, Pf_Est possesses transesterification capacity, presenting better results when isobutanol was used as an acyl acceptor (2.69 ± 0.14 × 10 μmol/min mg) and the highest hydrolytic activity toward olive oil among different types of oils testes in this study. Collectively, these biophysical and catalytic properties are of interest for several biotechnological applications that require harsh conditions, including high temperature and the presence of organic solvents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.