Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor−node−metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis.
The development and progression of oral cavity squamous cell carcinoma (OSCC) involves complex cellular mechanisms that contribute to the low five-year survival rate of approximately 20% among diagnosed patients. However, the biological processes essential to tumor progression are not completely understood. Therefore, detecting alterations in the salivary proteome may assist in elucidating the cellular mechanisms modulated in OSCC and improve the clinical prognosis of the disease. The proteome of whole saliva and salivary extracellular vesicles (EVs) from patients with OSCC and healthy individuals were analyzed by LC-MS/MS and label-free protein quantification. Proteome data analysis was performed using statistical, machine learning and feature selection methods with additional functional annotation. Biological processes related to immune responses, peptidase inhibitor activity, iron coordination and protease binding were overrepresented in the group of differentially expressed proteins. Proteins related to the inflammatory system, transport of metals and cellular growth and proliferation were identified in the proteome of salivary EVs. The proteomics data were robust and could classify OSCC with 90% accuracy. The saliva proteome analysis revealed that immune processes are related to the presence of OSCC and indicate that proteomics data can contribute to determining OSCC prognosis.
Polymorphous low-grade adenocarcinoma was first described relatively recently, and as experience with it continues to accumulate, it is becoming clear that late recurrences and metastases, whilst still infrequent, may not be quite as rare as previously thought. Reports of histological transformation are even scarcer, and most occurred at least 13 years after the polymorphous low-grade adenocarcinoma was initially recognized. It is a real possibility that this phenomenon, like clinical progression, may also be encountered more often as time passes. Therefore, we believe that, whilst polymorphous low-grade adenocarcinoma is certainly far less aggressive than, for example, adenoid cystic carcinoma, it nevertheless remains a true malignancy with a potential to prove fatal in a minority of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.