Polypropylene (PP)/talc composites are used extensively in the automotive, aeronautical, and consumer goods industries; however, the increasing demand for more efficient, safe, and less environmentally impact materials makes it necessary to include new reinforcements. In this way, the use of graphene nanoplates (GNP) is a good alternative because this carbon‐based material allows the achievement of new multifunctional nanocomposites with improved properties and process optimization. In this work, PP/talc (80/20) composites were prepared with the addition of 1, 3, 5, and 7 wt% of GNP using the extrusion process and injection molding. Morphological, thermal, rheological, mechanical, electrical, and electromagnetic characterizations were performed. The addition of GNPs led to a linear reduction in the melt flow index (MFI) of the samples. A rheological percolation was observed in the sample with the addition of 7 wt% of GNP. The addition of 5 and 7 wt% of GNP led to significant increases in elastic modulus and Shore D hardness. The electrical and electromagnetic evaluation showed that the increase of GNP in the compositions contributed to improvements in electrical conductivity and permittivity, resulting in a proportional increment in the total attenuation component (SET).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.