We report nonequilibrium molecular dynamics of ionic liquids interacting with metallic surfaces. A specific set of interaction parameters for ionic liquids composed of alkylammonium cations and alkylsulfonate anions with an iron surface, which has been previously developed (J. Chem. Theory Comput.2012, 8, 3348) is used here. We develop a procedure for a quantitative prediction of the friction coefficient at different loads and shear rates. The simulated friction coefficient agrees very well with the available experimental ones. The dependence of friction on the load, shear velocity, surface topology, and length of alkyl side chains in the ionic liquid is also investigated. The changes in the frictional forces are explained in terms of the specific arrangements and orientations of groups forming the ionic liquid at the vicinity of the surface.
An atomistic force field for ionic liquids interacting with a metal surface is built on the basis of quantum methods. Density functional calculations of alkylammonium cations and alkylsulfonate anions interacting with a cluster of iron atoms were performed, at a series of distances and orientations, using the M06 functional that represents noncovalent interactions. A site-site potential function was then adjusted to the BSSE-corrected DFT interaction energies. Finally, the polarization of the metal by the ions was taken into account using induced dipoles to reproduce the interaction energy between charges and a conductor surface. When combined with a molecular force field for the ionic liquid and a suitable potential for metals, our model allows the computer simulation of heterogeneous systems containing metal surfaces or nanoparticles in the presence of ionic liquids. Our aim is to study tribological systems with ionic lubricants. We report molecular dynamics results on the structure of the interfacial layer of several alkylammonium alkylsulfonate ionic liquids at a flat iron surface, including analyses of the positional and orientational ordering of the ions near the surface, and charge density profiles. Both anions and cations are found in the first ordered layer of ions near the surface, with the oxygen atoms of the sulfonyl groups interacting more strongly with the metal. The interfacial layer is essentially one ion thick, except for very short chain ionic liquids in which a second layer is observed. The effects of different lengths of the nonpolar alkyl side chains on the cation and the anion are different: whereas butyl chains on the sulfonate anions tend to be directed away from the surface, those on ammonium cations lie more parallel to the surface.
There is a growing interest in the development of new medical diagnostic tools with higher sensibility and less damage for the patient body, namely on imaging reporters for the management of diseases and optimization of treatment strategies. This article examines the properties of a new class of lanthanide complexes with a tripodal tris-3-hydroxy-4-pyridinone (tris-3,4-HOPO) ligand - NTP(PrHP)(3). Among the studies herein performed, major relevance is given to the thermodynamic stability of the complexes with a series of Ln(3+) ions (Ln = La, Pr, Gd, Er, Lu) and to the magnetic relaxation properties of the Gd(3+) complex. This hexadentate ligand enables the formation of (1 : 1) Ln(3+) complexes with high thermodynamic stability following the usual trend, while the Gd-chelates show improved relaxivity (higher hydration number), as compared with the commercially available Gd-based contrast agents (CAs); transmetallation of the Gd(3+)-L complex with Zn(2+) proved to be thermodynamically and kinetically disfavored. Therefore, NTP(PrHP)(3) emerges as part of a recently proposed new generation of CAs with prospective imaging sensibility gains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.