Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.
The development of 3D anthropomorphic head and neck phantoms is of crucial and timely importance to explore novel imaging techniques, such as radar-based MicroWave Imaging (MWI), which have the potential to accurately diagnose Cervical Lymph Nodes (CLNs) in a neoadjuvant and non-invasive manner. We are motivated by a significant diagnostic blind-spot regarding mass screening of LNs in the case of head and neck cancer. The timely detection and selective removal of metastatic CLNs will prevent tumor cells from entering the lymphatic and blood systems and metastasizing to other body regions. The present paper describes the developed phantom generator which allows the anthropomorphic modelling of the main biological tissues of the cervical region, including CLNs, as well as their dielectric properties, for a frequency range from 1 to 10 GHz, based on Magnetic Resonance images. The resulting phantoms of varying complexity are well-suited to contribute to all stages of the development of a radar-based MWI device capable of detecting CLNs. Simpler models are essential since complexity could hinder the initial development stages of MWI devices. Besides, the diversity of anthropomorphic phantoms resulting from the developed phantom generator can be explored in other scientific contexts and may be useful to other medical imaging modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.