Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Galectin-3 binding protein (LGALS3BP or 90 K) is a secreted glycoprotein found in human body fluids. Deregulated levels were observed in cancer and infection and its study in neurological diseases is more recent. Here, we have investigated 90 K from human cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS, n = 35) and other neurological diseases (n = 23). CSF was fractionated by ultrafiltration/size-exclusion chromatography (SEC) and eluted fractions were analysed by complementary techniques including immunoblotting, electron microscopy and nano-liquid chromatography-tandem mass spectrometry. A fraction of 90 K appeared as nanoparticles of irregular shape with heterogeneous dimensions of 15-60 nm that co-eluted with extracellular vesicles in SEC. Median levels of 90 K quantified by ELISA were not different between ALS patients (215.8 ng/ml) and controls (213.3 ng/ml) in contrast with the benchmark biomarker for ALS phosphoneurofilament heavy chain (1750 and 345 pg/ml, respectively). A multiregression model supported age is the only independent predictor of 90 K level in both groups (p < 0.05). Significant correlation was found between 90 K levels and age for the ALS group (r = 0.366, p = 0.031) and for all subjects (r = 0.392, p = 0.003). In conclusion, this study unveils the presence of 90 K-containing nanoparticles in human CSF and opens novel perspectives to further investigate 90 K as potential aging marker. Galectin-3-binding protein (LGALS3BP, also known as Mac-2BP or tumor-associated antigen 90 K) is a secretory protein with 567 amino acid residues 1. It is heavily N-glycosylated with seven glycosylation sites 2. In early studies 90 K was purified from supernatants of tumor cells where it appeared as large molecular mass complexes 3. Purified full-length recombinant glycoprotein from human embryonic kidney cells was found to self-associate into non-covalent oligomers of 1000-1500 kDa that appeared as ring-like structures and other shapes by electron microscopy. Recombinant 90 K also associated with collagens IV, V and VI, fibronectin and nidogen, it mediated cell adhesion and it was present in the extracellular matrix of mouse tissues 4. 90 K was visualized by electron microscopy in nanoparticles of irregular shape found in extracellular vesicle (EV) fractions from tumor cells in culture 5. More recently, asymmetric flow field-flow fractionation revealed novel nanoparticles from supernatants of tumor cells in culture termed exomeres, which contained 90 K 6. Cells from the human body as well as cells in culture release EV to the surroundings. EV include two major groups, exosomes of endosomal origin and microvesicles that derive from the plasma membrane of cells. EV can be found in body fluids, such as blood 7 or CSF 8-11 and constitute promising tools in disease diagnosis 12. In view of EV heterogeneity several isolation techniques have been used including ultracentrifugation and size-exclusion chromatography (SEC) 12 .
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative neuromuscular disease that affects motor neurons controlling voluntary muscles. Survival is usually 2–5 years after onset, and death occurs due to respiratory failure. The identification of biomarkers would be very useful to help in disease diagnosis and for patient stratification based on, e.g., progression rate, with implications in therapeutic trials. Neurofilaments constitute already-promising markers for ALS and, recently, chitinases have emerged as novel marker targets for the disease. Here, we investigated cerebrospinal fluid (CSF) chitinases as potential markers for ALS. Chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein 2 (CHI3L2) and the benchmark marker phosphoneurofilament heavy chain (pNFH) were quantified by an enzyme-linked immunosorbent assay (ELISA) from the CSF of 34 ALS patients and 24 control patients with other neurological diseases. CSF was also analyzed by UHPLC-mass spectrometry. All three chitinases, as well as pNFH, were found to correlate with disease progression rate. Furthermore, CHIT1 was elevated in ALS patients with high diagnostic performance, as was pNFH. On the other hand, CHIT1 correlated with forced vital capacity (FVC). The three chitinases correlated with pNFH, indicating a relation between degeneration and neuroinflammation. In conclusion, our results supported the value of CHIT1 as a diagnostic and progression rate biomarker, and its potential as respiratory function marker. The results opened novel perspectives to explore chitinases as biomarkers and their functional relevance in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.