Please cite this article in press as: Galindo, A., et al., Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agric. Water Manage. (2017) b s t r a c tWater scarcity in Mediterranean climate areas will be progressively aggravated by climate change, population increase and urban, tourism and industrial activities. To protect water resources and their integrity for future use and to improve biodiversity, besides following advanced deficit irrigation strategies in fruit cultivation, attention could well be directed towards what are at present underused plant materials able to withstand deficit irrigation with minimum impact on yield and fruit quality. To this end, the state of the art as regards deficit irrigation strategies and the response of some very interesting emerging fruit crops [jujube (Zizyphus jujuba Mill.), loquat (Eriobotrya japonica Lindl.), pistachio (Pistacia vera L.) and pomegranate (Punica granatum L.)] are reviewed. The strengths and weaknesses of deficit irrigation strategies and the mechanisms developed by these emerging fruit crops in the face of water stress are discussed. The response of these crops to deficit irrigation, with special attention paid to the effect on yield but also on fruit quality and health-related chemical compounds, was analysed in order to assess their suitability for saving water in Mediterranean semiarid agrosystems and to analyze their potential role as alternatives to currently cultivated fruit crops with higher water requirements. Finally, the factors involved in establishing an identity brand (hydroSOS) to protect fruits obtained under specific DI conditions are discussed.
Profiles of fruit density, fruit size, and oil content were measured on 12 occasions in 7 olive orchards in Spain and 2 in Australia. Orchard structure varied widely. Height ranged from 2.0 to 5.5 m, row spacing from 3 to 6 m, and canopy width from 0.7 to 3 m. Most orchards were oriented north-south (N-S) but one in Spain was oriented close to east-west (E-W) (208 NE-SW). All orchards in Spain were cv. Arbequina, and in Australia they were cvv. Barnea and Picual. Analyses with a model of interception and transmission that estimated interception by individual sides of hedgerows revealed that fruit size and oil content were strongly related to intercepted radiation during the month before harvest across all orchards. Relationships were also evident between fruit density and interception but varied among orchards and years, indicating the importance of other environmental and probably physiological effects. In N-S orchards of cv. Arbequina, average fruit size and oil content increased linearly from 0.40 g (dry weight) to 0.72 g, and from 36 to 49% (of dry weight), as daily intercepted PAR increased from 6 to 25 mol/m 2 (15-60% of horizontally incident radiation). The general principles of response extended to E-W orchards. There, it was shown that generally large fruit with high oil content on S sides was consistent with the plateau responses to radiation evident in the more extensive N-S data. On the N side, however, and accounting for transmission through the hedgerow, both fruit size and oil content were greater than in positions intercepting equivalent radiation in N-S orchards. Examples are provided of the utility of responses of fruit density, size, and oil content in establishing combinations of row height, row width, and row distance to improve or maintain productivity in some of the orchards included in the study.
Abstract. Growing trees are quite vulnerable to cold temperatures. To minimise the effect of these cold temperatures, they stop their growth over the coldest months of the year, a state called dormancy. In particular, endodormancy requires accumulating chilling temperatures to finish this sort of dormancy. The accumulation of cool temperatures according to specific rules is called chilling accumulation, and each tree species and variety has specific chilling requirements for correct plant development. Under global warming, it is expected that the fulfilment of the chilling requirements to break dormancy in fruit trees could be compromised. In this study, the impact of climate change on the chilling accumulation over peninsular Spain and the Balearic Islands was assessed. For this purpose, bias-adjusted results of 10 regional climate models (RCMs) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 were used as inputs of four different models for calculating chilling accumulation, and the results for each model were individually compared for the 2021–2050 and 2071–2100 future periods under both RCPs. These results project a generalised reduction in chilling accumulation regardless of the RCP, future period or chilling calculation model used, with higher reductions for the 2071–2100 period and the RCP8.5 scenario. The projected winter chill decrease may threaten the viability of some tree crops and varieties in some areas where the crop is currently grown, but also shows scope for varieties with lower chilling requirements. The results are relevant for planning future tree plantations under climate change, supporting adaptation of spatial distribution of tree crops and varieties in Spain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.