Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, a-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO 2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.U nderstanding the structure, formation, and evolution of giant planets and extrasolar terrestrial planets (super-Earths) discovered to date requires knowledge of the properties of basic constituents such as iron, magnesium oxide, and silica at the relevant extreme conditions, including pressures of 100s to 1000s of GPa. Melting is arguably the most important process determining the physical and chemical evolution of planetary interiors, as differentiation of a terrestrial planet into a dense metallic core surrounded by rocky mantle and atmosphere proceeds by gravitational separation of a liquid phase (1). Moreover, giant impacts during the terminal stages of planetary formation can cause large-scale melting and generate a magma ocean encompassing much of the planet's rocky constituents (2, 3). As mantle viscosity typically increases by more than 10 to 15 orders of magnitude upon solidification (4), the potential freezing of this magma ocean would greatly influence the planet's subsequent thermal evolution, geochemistry, and magnetic field.We used shock compression of fused silica, a-quartz, and stishovite to document the pressuredensity-temperature equation-of-state and optical properties (hence, electronic conductivity) of SiO 2 . Stishovite's high initial density allowed us to access unprecedented high densities, which extended the experimental melting line of SiO 2 to more than 500 GPa. In combination with melting data for other oxides and iron, the highpressure measurements provide constraints on the thermal structure and evolution of rocky planets and provide a benchmark for future theoretical (e.g., first-principles molecular dynamics), as well as experimental studies.We used a TW-power laser pulse to send a strong, but decaying, shock through a planar target assembly (Fig. 1, A and B) (5). Nanosecond streaked optical pyrometry (SOP) and Doppler velocity interferometry (VISAR) recorded the shock-front velocity, reflectivity, and thermal emission as a function of time (Fig. 1, C and D). We applied impedance matching to obtain pressuredensity data up to 2.5 TPa along the locus of shock (Hugoniot) states of sti...
In various shocked meteorites, low-pressure silica polymorph α-cristobalite is commonly found in close spatial relation with the densest known SiO2 polymorph seifertite, which is stable above ∼80 GPa. We demonstrate that under hydrostatic pressure α-cristobalite remains untransformed up to at least 15 GPa. In quasi-hydrostatic experiments, above 11 GPa cristobalite X-I forms—a monoclinic polymorph built out of silicon octahedra; the phase is not quenchable and back-transforms to α-cristobalite on decompression. There are no other known silica polymorphs, which transform to an octahedra-based structure at such low pressures upon compression at room temperature. Further compression in non-hydrostatic conditions of cristobalite X-I eventually leads to the formation of quenchable seifertite-like phase. Our results demonstrate that the presence of α-cristobalite in shocked meteorites or rocks does not exclude that materials experienced high pressure, nor is the presence of seifertite necessarily indicative of extremely high peak shock pressures.
Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO2) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations. Their crystal structures are drastically different from any previously considered models, but explain well features of pair-distribution functions of highly densified silica glass and molten basalt at high pressure. Built of four, five-, and six-coordinated silicon, coesite-IV and coesite-V contain SiO6 octahedra, which, at odds with 3rd Pauling’s rule, are connected through common faces. Our results suggest that possible silicate liquids in Earth’s lower mantle may have complex structures making them more compressible than previously supposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.