Edited by Dietmar MansteinThe multifunctional protein Lmo7 has been implicated in some aspects of myogenesis in mammals. Here we studied the distribution and expression of Lmo7 and the effects of Lmo7 knockdown in primary cultures of chick skeletal muscle cells. Lmo7 was localized within the nuclei of myoblasts and at the perinuclear region of myotubes. Knockdown of Lmo7 using siRNA specific to chick reduces the number and width of myotubes and the number of MyoD positive-myoblasts. Both Wnt3a enriched medium and Bio, activators of the Wnt/beta-catenin pathway, could rescue the effects of the Lmo7 knockdown suggesting a crosstalk between the Wnt/beta-catenin and Lmo7-mediated signaling pathways. Our data shows a role of Lmo7 during the initial events of chick skeletal myogenesis, particularly in myoblast survival.
BackgroundMyoblasts undergo major changes in their plasma membrane during the initial steps of skeletal muscle differentiation, including major alterations in the distribution of cholesterol. Cholesterol is involved in crucial membrane functions, such as fluidity, and permeability, and in the organization of specialized membrane microdomains (or lipid rafts). We have previously shown that alterations in cholesterol levels in myoblasts induce changes in proliferation and differentiation, which involves activation of Wnt/beta-catenin signaling pathway. In this study we used methyl-β-cyclodextrin (MbCD) to extract cholesterol from the membrane of chick skeletal muscle cells grown in culture. Using Ion Torrent-based sequencing, we compared the transcriptome of untreated and MbCD treated cells. Our aim was to define the genes that are expressed in these two conditions and relate their expression to cellular functions.ResultsOver 5.7 million sequences were obtained, representing 671.38 Mb of information. mRNA transcriptome profiling of myogenic cells after cholesterol depletion revealed alterations in transcripts involved in the regulation of apoptosis, focal adhesion, phagosome, tight junction, cell cycle, lysosome, adherens junctions, gap junctions, p53 signaling pathway, endocytosis, autophagy and actin cytoskeleton. Lim domain only protein 7 mRNA was found to be the highest up-regulated feature after cholesterol depletion.ConclusionsThis is the first study on the effects of membrane cholesterol depletion in mRNA expression in myogenic cells. Our data shows that alterations in the availability of plasma membrane cholesterol lead to transcriptional changes in myogenic cells. The knowledge of the genes involved in the cellular response to cholesterol depletion could contribute to our understanding of skeletal muscle differentiation.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-544) contains supplementary material, which is available to authorized users.
Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form -nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without -nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.