The mechanisms underlying immune tolerance during pregnancy are poorly understood. In this regard, Treg seem to play an important role in mediating maternal tolerance to the fetus. We proposed a crucial role of T regulatory cells (Treg) in avoiding immunological rejection of the fetus after observing diminished number and function of Treg in abortion-prone mice. We further confirmed the protective role of Treg during pregnancy by transferring pregnancy-induced Treg into abortion-prone mice, which prevented rejection. Here, we analyzed the mechanisms involved in Treg-mediated protection. As expected, Treg therapy prevented abortion, while expanding the peripheral and thymic Treg population. Surprisingly, the decidual levels of the Th1 cytokines IFN-c and TNF-a were not diminished after therapy. Interestingly, the mRNA levels of leukemia inhibitory factor, TGF-b and heme oxygenase-1 at the fetal-maternal interface were dramatically up-regulated after Treg transfer, while the levels of indolamine 2,3-dioxygenase remained unchanged. Our data suggest that Treg treatment can not prevent T cell infiltration or high Th1 levels but is able to create a privileged tolerant microenvironment at the fetal-maternal interface, further shedding light onto the molecular mechanisms involved in pregnancy tolerance.
Mammalian pregnancy is thought to be a state of immunological tolerance. The mechanisms underlying this phenomenon are still poorly understood. Here, we determined whether an inappropriate function of T regulatory (Treg) cells is involved in the pathogenesis of spontaneous abortion. We evaluated spleen and decidual lymphocytes from CBA/J mice undergoing immunological abortion (DBA/2J-mated) or having normal pregnancy (BALB/c-mated) on day 14 of gestation for ex vivo cytokine production after PMA or paternal antigen (alloantigen) stimulation. Treg activity was characterized by quantifying CD4(+)CD25(+) cells, foxp3 expression, and interleukin-10 secretion. Decidual lymphocytes from abortion CBA/J mice contained a significantly higher frequency of interferon-gamma-producing T cells specific for paternal antigens compared to those from normal pregnancy (7.8% versus 2.7%, P < 0.05). Compared to virgin CBA/J females, normal pregnant mice showed strongly elevated numbers of CD4(+)CD25(+) and interleukin-10(+) Treg cells in the thymus whereas significantly lower frequencies of Treg cells were observed in abortion mice. Very interestingly, CD4(+)CD25(+) Treg cells from normal pregnant and nonpregnant CBA/J mice could inhibit both proliferation and interferon-gamma secretion of lymphocytes from abortion mice in vitro whereas in vivo prevention of fetal rejection could only be achieved after adoptive transfer of Treg cells from normal pregnant mice. Our data suggest that pregnancy-induced Treg cells play a vital role in maternal tolerance to the allogeneic fetus.
Pregnancy establishment implies the existence of a highly vascularized and transient organ, the placenta, which ensures oxygen supply to the fetus via haemoproteins. Haem metabolism, including its catabolism by haem oxygenase-1 (HO-1), should be of importance in maintaining the homeostasis of haemoproteins and controlling the deleterious effects associated with haem release from maternal or fetal haemoglobins, thus ensuring placental function and fetal development. We demonstrate that HO-1 expression is essential to promote placental function and fetal development, thus determining the success of pregnancy. Hmox1 deletion in mice has pathological consequences for pregnancy, namely suboptimal placentation followed by intrauterine fetal growth restriction (IUGR) and fetal lethality. These pathological effects can be mimicked by administration of exogenous haem in wild-type mice. Fetal and maternal HO-1 is required to prevent post-implantation fetal loss through a mechanism that acts independently of maternal adaptive immunity and hormones. The protective HO-1 effects on placentation and fetal growth can be mimicked by the exogenous administration of carbon monoxide (CO), a product of haem catabolism by HO-1 that restores placentation and fetal growth. In a clinical relevant model of IUGR, CO reduces the levels of free haem in circulation and prevents fetal death. We unravel a novel physiological role for HO-1/CO in sustaining pregnancy which aids in understanding the biology of pregnancy and reveals a promising therapeutic application in the treatment of pregnancy pathologies.
Regulatory T cells (Treg) play an important role in fetal protection. They expand during normal pregnancy and protect fetal antigens from maternal effector cells. Their effect is associated with the up-regulation of tolerance-associated molecules at the fetal-maternal interface. Among these, Heme Oxygenase-1 (HO-1, coded by Hmox1) is of special importance as its blockage correlates with increased abortion rates and its up-regulation positively affects pregnancy outcome. Here, we aimed to investigate whether the protective effect of Treg is mediated by HO-1 in a mouse model. HO-1 blockage by Zinc Protoporhyrin (ZnPPIX) abrogated the protective effect of Treg transfer. We found that HO-1 is important in maintaining maternal dendritic cells (DCs) in an immature state, which contributes to the expansion of the peripheral Treg population. This brings to light one essential pathway through which Treg mediates the semi-allogeneic fetus tolerance.
Differences in Treg levels and pregnancy outcome do not correlate with changes in hormonal levels. In addition, as Treg augmentation takes place early and it is observed mainly in the decidual component of the fetal-maternal interface, IDO does not seem to be the pathway underlying Treg protective activity as proposed for humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.