BackgroundThe genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters.ResultsA discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction.ConclusionsOur results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition.
Discriminant analysis using morphometric variables reliably assigned individuals in natural populations to their respective groups. In addition, the results provide the first direct evidence that L. narbonense and a new species, LIMONIUM MARITIMUM: Caperta, Cortinhas, Paes, Guara, Espírito-Santo and Erben, SP NOV: , related to L. vulgare are present on Portuguese coasts. Most of these species are found together in mixed populations, especially L. vulgare and L. narbonense. It is hypothesized that taxonomic biodiversity found in sites where distinct species co-occur facilitates the evolutionary processes of hybridization, introgression and apomixis. This study therefore contributes to the elucidation of the taxonomic diversity in L. vulgare-related species and may also help in implementing future conservation programmes to maintain the evolutionary processes generating biodiversity.
The soil system has been frequently overlooked during plant reintroduction planning and practice since working with soils and plant roots can be difficult, particularly in saline environments. Coastal saline environments are major contributors to regional and global biodiversity and an important source of endemic species. However, various species are in decline or considered threatened, particularly halophytes (salt tolerant) due to negative anthropic impacts. The Lusitanian endemic halophyte Limonium daveaui formerly had a large distribution range along the west coast of Portugal but currently it shows a restricted distribution in the Tagus estuary. Field surveys revealed that this critically endangered species forms few local populations with small size invaded by exotic species. In this study, we investigated the potential utilization of Technosols, an innovative sustainable, ecological engineering method combined with brackish water irrigation for potential L. daveaui reintroduction in native habitats. Seed germination percentages were evaluated in different environmental conditions. Through a microcosm assay, a Technosol was constructed using a saline Fluvisol with a mixture of low value inorganic and organic wastes, which were chemically characterized. Plants were cultivated in the Fluvisol and Technosol and irrigated with brackish water collected in the nearby area. To assess plant growth, morphometric parameters and the plants’ physiological status were assessed and the fresh and dry biomass determined. Results showed that seed germination was higher on moist filter paper with distilled water than in Fluvisol or Technosol. Plants grown in Technosol had a greater development, with higher values of photosynthetic indexes and biomass production than in Fluvisol. Our findings provide a basis for future in situ conservation studies and support the idea that eco-friendly soil technology approaches are beneficial to conserve rare halophyte species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.