Background:The translocation of the Bordetella pertussis CyaA toxin across membrane is still poorly understood. Results: A membrane-active peptide isolated from the CyaA toxin is characterized by biophysical approaches.
Conclusion:The ␣-helical peptide is inserted in plane and induces membrane permeabilization. Significance: The membrane-destabilizing activity of this peptide may assist the initial steps of the CyaA translocation process.
Many Gram-negative bacteria use Type I secretion systems, T1SS, to secrete virulence factors that contain calcium-binding Repeat-in-ToXin (RTX) motifs. Here, we present structural models of an RTX protein, RD, in both its intrinsically disordered calcium-free Apo-state and its folded calcium-bound Holo-state. Apo-RD behaves as a disordered polymer chain comprising several statistical elements that exhibit local rigidity with residual secondary structure. Holo-RD is a folded multi-domain protein with an anisometric shape. RTX motifs thus appear remarkably adapted to the structural and mechanistic constraints of the secretion process. In the low calcium environment of the bacterial cytosol, Apo-RD is an elongated disordered coil appropriately sized for transport through the narrow secretion machinery. The progressive folding of Holo-RD in the extracellular calcium-rich environment as it emerges form the T1SS may then favor its unidirectional export through the secretory channel. This process is relevant for hundreds of bacterial species producing virulent RTX proteins.
The past decade has seen a fundamental reappraisal of the protein structure-to-function paradigm because it became evident that a significant fraction of polypeptides are lacking ordered structures under physiological conditions. Ligand-induced disorder-to-order transition plays a key role in the biological functions of many proteins that contain intrinsically disordered regions. This trait is exhibited by RTX (Repeat in ToXin) motifs found in more than 250 virulence factors secreted by Gram-negative pathogenic bacteria. We have investigated several RTX-containing polypeptides of different lengths, all derived from the Bordetella pertussis adenylate cyclase toxin, CyaA. Using a combination of experimental approaches, we showed that the RTX proteins exhibit the hallmarks of intrinsically disordered proteins in the absence of calcium. This intrinsic disorder mainly results from internal electrostatic repulsions between negatively charged residues of the RTX motifs. Calcium binding triggers a strong reduction of the mean net charge, dehydration and compaction, folding and stabilization of secondary and tertiary structures of the RTX proteins. We propose that the intrinsically disordered character of the RTX proteins may facilitate the uptake and secretion of virulence factors through the bacterial secretion machinery. These results support the hypothesis that the folding reaction is achieved upon protein secretion and, in the case of proteins containing RTX motifs, could be finely regulated by the calcium gradient across bacterial cell wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.