Qualitative and quantitative analyses of phenolic compounds were carried out on quince fruit samples from seven different geographical origins in Portugal. For each origin, both pulp and peel were analyzed by reversed-phase HPLC-DAD and HPLC-DAD/MS. The results revealed differences between the phenolic profiles of pulps and peels in all studied cases. The pulps contained mainly caffeoylquinic acids (3-, 4-, and 5-O-caffeoylquinic acids and 3,5-dicaffeoylquinic acid) and one quercetin glycoside, rutin (in low amount). The peels presented the same caffeoylquinic acids and several flavonol glycosides: quercetin 3-galactoside, kaempferol 3-glucoside, kaempferol 3-rutinoside, and several unidentified compounds (probably kaempferol glycoside and quercetin and kaempferol glycosides acylated with p-coumaric acid). The highest content of phenolics was found in peels.
Through the years, tea consumption has been associated with good health, and some publications are related to oral health. The bioactive components of green tea are thought to be able to influence the process of caries formation through inhibition of proliferation of the streptococcal agent, interference with the process of bacterial adhesion to tooth enamel, and inhibition of glucosyl transferase and amylase; however, little is known about black tea and oral health. The aim of the present in-vitro study was to determine the inhibitory activity of a novel, patent-pending and proprietary blend of green and black tea aqueous extracts on Streptococcus mutans, a bacterium widely associated with plaque development and tooth decay. A minimum inhibitory concentration (MIC) of 12.5 mg/mL and a minimum bactericidal concentration (MBC) of 12.5 mg/mL was established against S. mutans, meaning that at concentrations of 12.5 mg/mL and higher, the proprietary tea blend is effective against the growth of S. mutans. This MIC concentration is lower than the ones reported in the literature for alcoholic black tea and green tea extracts tested separately. As a promising natural ingredient for oral health, this finding is a good indicator for the use of this proprietary blend of black and green tea water extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.