In neurodegenerative diseases, pathogenic proteins tend to misfold and form aggregates that are difficult to remove and able to induce excessive endoplasmic reticulum (ER) stress, leading to neuronal injury and apoptosis. Homocysteine-induced endoplasmic reticulum protein (Herp), an E3 ubiquitin ligase, is an important early marker of ER stress and is involved in the ubiquitination and degradation of many neurodegenerative proteins. However, in Huntington's disease (HD), a typical polyglutamine disease, whether Herp is also involved in the metabolism and degradation of the pathogenic protein, mutant huntingtin, has not been reported. Therefore, we studied the relationship between Herp and N-terminal fragments of huntingtin (HttN-20Q and HttN-160Q). We found that Herp was able to bind to the overexpressed Htt N-terminal, and this interaction was enhanced by expansion of the polyQ fragment. Confocal microscopy demonstrated that Herp was co-localized with the HttN-160Q aggregates in the cytoplasm and tightly surrounded the aggregates. Overexpression of Herp significantly decreased the amount of soluble and insoluble HttN-160Q, promoted its ubiquitination, and inhibited its cytotoxicity. In contrast, knockdown of Herp resulted in more HttN-160Q protein, less ubiquitination, and stronger cytotoxicity. Inhibition of the autophagy-lysosomal pathway (ALP) had no effect on the function of Herp. However, blocking the ubiquitin-proteasome pathway (UPP) inhibited the reduction in soluble HttN-160Q caused by Herp. Interestingly, blocking the UPP did not weaken the ability of Herp to reduce HttN-160Q aggregates. Deletions of the N-terminal of Herp weakened its ability to inhibit HttN-160Q aggregation but did not result in a significant increase in its soluble form. However, loss of the C-terminal led to a significant increase in soluble HttN-160Q, but Herp still maintained the ability to inhibit aggregate formation. We further found that the expression level of Herp was significantly increased in HD animal and cell models. Our findings suggest that Herp is a newly identified huntingtin-interacting protein that is able to reduce the cytotoxicity of mutant huntingtin by inhibiting its aggregation and promoting its degradation. The N-terminal of Herp serves as the molecular chaperone to inhibit protein aggregation, while its C-terminal functions as an E3 ubiquitin ligase to promote the degradation of misfolded proteins through the UPP. Increased expression of Herp in HD models may be a pro-survival mechanism under stress.
Calcium-responsive transactivator (CREST), a nuclear protein highly expressed in postmitotic neurons, is involved in the regulation of cell cycle, differentiation and dendritic development of neuronal cells. Its mRNA has been detected in the testis of adult rat, whilst its protein expression and distribution pattern in the testis remain to be elucidated. In this study, we examined the distribution of CREST in the adult testes of both rats and human as well as the expression pattern of CREST in the testes of postnatal developing rats. In the adult testes of both human and rats, immunohistochemical analysis revealed that CREST was selectively distributed in the mature Sertoli cells but not in the spermatogenic cells. In the testes of postnatal developmental rats, CREST was expressed not only in Sertoli cells but also in the gonocytes and spermatogenic cells at the initial stage of spermatogenic cell differentiation. CREST immunoreactivity continued to increase in Sertoli cells during differentiation, reaching its peak in adulthood. However, CREST immunostaining intensity dramatically decreased as the spermatogenic cells differentiate, disappearing in the post-differentiation stage. Furthermore, Brg1 and p300, two CREST-interacting proteins ubiquitously expressed in the body, are found to be colocalized with CREST in the spermatogenic epithelial cells including Sertoli cells. The unique expression pattern of CREST in developing testis suggests that CREST might play regulatory roles in the differentiation of spermatogenic epithelial cells. The Sertoli cell-specific expression of CREST in the adulthood hints that CREST might be a novel biomarker for the mature Sertoli cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.