The present study refers to 3D metal additive manufacturing (MAM) from an interdisciplinary perspective, providing an overview on sustainability, basic principles, and a conceptual framework on environmental performance, implicit constraints regarding materials, recycling and use/reuse tools for extended life cycle, regarded as the trendiest manufacturing processes in terms of material consumptions efficacy and energy efficiency. The demand for integrating MAM technology as a means to boosting sustainability in industry is based on its capacity to use smart or custom-designed materials to generate special geometries, unobtainable otherwise, allowing for further part optimisation or redesign. The outlined advantages and challenges of the new MAM processes and advanced technologies for functional objects and durable products underline the high interest in this area. Results from the literature and our MAM research interest indicate that some metal powder (MP) recycling and use/reuse technologies could be developed to save MP, as could MAM applications in component redesign and repairs to increase sustainability. The achievement has a high degree of generality and serves as a basis for future MAM sustainable methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.