Background Metastatic castration-resistant prostate cancer is enriched in DNA damage response (DDR) gene aberrations. The TOPARP-B trial aims to prospectively validate the association between DDR gene aberrations and response to olaparib in metastatic castration-resistant prostate cancer.Methods In this open-label, investigator-initiated, randomised phase 2 trial following a selection (or pick-thewinner) design, we recruited participants from 17 UK hospitals. Men aged 18 years or older with progressing metastatic castration-resistant prostate cancer previously treated with one or two taxane chemotherapy regimens and with an Eastern Cooperative Oncology Group performance status of 2 or less had tumour biopsies tested with targeted sequencing. Patients with DDR gene aberrations were randomly assigned (1:1) by a computer-generated minimisation method, with balancing for circulating tumour cell count at screening, to receive 400 mg or 300 mg olaparib twice daily, given continuously in 4-week cycles until disease progression or unacceptable toxicity. Neither participants nor investigators were masked to dose allocation. The primary endpoint of confirmed response was defined as a composite of all patients presenting with any of the following outcomes: radiological objective response (as assessed by Response Evaluation Criteria in Solid Tumors 1.1), a decrease in prostate-specific antigen (PSA) of 50% or more (PSA50) from baseline, or conversion of circulating tumour cell count (from ≥5 cells per 7•5 mL blood at baseline to <5 cells per 7•5 mL blood). A confirmed response in a consecutive assessment after at least 4 weeks was required for each component. The primary analysis was done in the evaluable population. If at least 19 (43%) of 44 evaluable patients in a dose cohort responded, then the dose cohort would be considered successful. Safety was assessed in all patients who received at least one dose of olaparib. This trial is registered at ClinicalTrials.gov, NCT01682772. Recruitment for the trial has completed and follow-up is ongoing. Findings 711 patients consented for targeted screening between April 1, 2015, and Aug 30, 2018. 161 patients had DDR gene aberrations, 98 of whom were randomly assigned and treated (49 patients for each olaparib dose), with 92 evaluable for the primary endpoint (46 patients for each olaparib dose). Median follow-up was 24•8 months (IQR 16•7-35•9). Confirmed composite response was achieved in 25 (54•3%; 95% CI 39•0-69•1) of 46 evaluable patients in the 400 mg cohort, and 18 (39•1%; 25•1-54•6) of 46 evaluable patients in the 300 mg cohort. Radiological response was achieved in eight (24•2%; 11•1-42•3) of 33 evaluable patients in the 400 mg cohort and six (16•2%; 6•2-32•0) of 37 in the 300 mg cohort; PSA50 response was achieved in 17 (37•0%; 23•2-52•5) of 46 and 13 (30•2%; 17•2-46•1) of 43; and circulating tumour cell count conversion was achieved in 15 (53•6%; 33•9-72•5) of 28 and 13 (48•1%; 28•7-68•1) of 27. The most common grade 3-4 adverse event in both cohorts was anaemia (15 [31%] ...
Patients with prostate cancer frequently show resistance to androgen-deprivation therapy, a condition known as castration-resistant prostate cancer (CRPC). Acquiring a better understanding of the mechanisms that control the development of CRPC remains an unmet clinical need. The well-established dependency of cancer cells on the tumour microenvironment indicates that the microenvironment might control the emergence of CRPC. Here we identify IL-23 produced by myeloid-derived suppressor cells (MDSCs) as a driver of CRPC in mice and patients with CRPC. Mechanistically, IL-23 secreted by MDSCs can activate the androgen receptor pathway in prostate tumour cells, promoting cell survival and proliferation in androgen-deprived conditions. Intra-tumour MDSC infiltration and IL-23 concentration are increased in blood and tumour samples from patients with CRPC. Antibody-mediated inactivation of IL-23 restored sensitivity to androgen-deprivation therapy in mice. Taken together, these results reveal that MDSCs promote CRPC by acting in a non-cell autonomous manner. Treatments that block IL-23 can oppose MDSC-mediated resistance to castration in prostate cancer and synergize with standard therapies.
BackgroundProstate-specific membrane antigen (PSMA; folate hydrolase) prostate cancer (PC) expression has theranostic utility.ObjectiveTo elucidate PC PSMA expression and associate this with defective DNA damage repair (DDR).Design, setting, and participantsMembranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data.Outcome measurements and statistical analysisExpression of mPSMA was quantitated by modified H-score. Patient DNA was tested by NGS. Gene expression and activity scores were determined from mCRPC transcriptomes. Statistical correlations utilised Wilcoxon signed rank tests, survival was estimated by Kaplan-Meier test, and sample heterogeneity was quantified by Shannon's diversity index.Results and limitationsExpression of mPSMA at diagnosis was associated with higher Gleason grade (p = 0.04) and worse overall survival (p = 0.006). Overall, mPSMA expression levels increased at mCRPC (median H-score [interquartile range]: castration-sensitive prostate cancer [CSPC] 17.5 [0.0–60.0] vs mCRPC 55.0 [2.8–117.5]). Surprisingly, 42% (n = 16) of CSPC and 27% (n = 16) of mCRPC tissues sampled had no detectable mPSMA (H-score <10). Marked intratumour heterogeneity of mPSMA expression, with foci containing no detectable PSMA, was observed in all mPSMA expressing CSPC (100%) and 37 (84%) mCRPC biopsies. Heterogeneous intrapatient mPSMA expression between metastases was also observed, with the lowest expression in liver metastases. Tumours with DDR had higher mPSMA expression (p = 0.016; 87.5 [25.0–247.5] vs 20 [0.3–98.8]; difference in medians 60 [5.0–95.0]); validation cohort studies confirmed higher mPSMA expression in patients with deleterious aberrations in BRCA2 (p < 0.001; median H-score: 300 [165–300]; difference in medians 195.0 [100.0–270.0]) and ATM (p = 0.005; 212.5 [136.3–300]; difference in medians 140.0 [55.0–200]) than in molecularly unselected mCRPC biopsies (55.0 [2.75–117.5]). Validation studies using mCRPC transcriptomes corroborated these findings, also indicating that SOX2 high tumours have low PSMA expression.ConclusionsMembranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts.Patient summaryThrough analysis of prostate cancer samples, we report that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients. This may limit the usefulness of PSMA scans and PSMA-targeted therapies. We show for the first time that prostate cancers with defective DNA repair produce more PSMA and so may respond better to PSMA-targeting treatments.
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC–regulated gene expression. In AR-SV–driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. Significance: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies. See related commentary by Rasool et al., p. 1011. This article is highlighted in the In This Issue feature, p. 995
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.