Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC–regulated gene expression. In AR-SV–driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer.
Significance:
Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.
See related commentary by Rasool et al., p. 1011.
This article is highlighted in the In This Issue feature, p. 995
The present studies report the effects on neonatal rats of oral exposure to genistein during the period from birth to postnatal day (PND) 21 to generate data for use in assessing human risk following oral ingestion of genistein. Failure to demonstrate significant exposure of the newborn pups via the mothers milk led us to subcutaneously inject genistein into the pups over the period PND 1-7, followed by daily gavage dosing to PND 21. The targeted doses throughout were 4 mg/kg/day genistein (equivalent to the average exposure of infants to total isoflavones in soy milk) and a dose 10 times higher than this (40 mg/kg genistein). The dose used during the injection phase of the experiment was based on plasma determinations of genistein and its major metabolites. Diethylstilbestrol (DES) at 10 micro g/kg was used as a positive control agent for assessment of changes in the sexually dimorphic nucleus of the preoptic area (SDN-POA). Administration of 40 mg/kg genistein increased uterus weights at day 22, advanced the mean day of vaginal opening, and induced permanent estrus in the developing female pups. Progesterone concentrations were also decreased in the mature females. There were no effects in females dosed with 4 mg/kg genistein, the predicted exposure level for infants drinking soy-based infant formulas. There were no consistent effects on male offspring at either dose level of genistein. Although genistein is estrogenic at 40 mg/kg/day, as illustrated by the effects described above, this dose does not have the same repercussions as DES in terms of the organizational effects on the SDN-POA.
Inactivating mutations of the CREBBP and EP300 acetyltransferases are among the most common genetic alterations in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). Here, we examined the relationship between these two enzymes in germinal center (GC) B cells, the normal counterpart of FL and DLBCL, and in lymphomagenesis by using conditional GC-directed deletion mouse models targeting Crebbp or Ep300. We found that CREBBP and EP300 modulate common as well as distinct transcriptional programs implicated in separate anatomic and functional GC compartments. Consistently, deletion of Ep300 but not Crebbp impaired the fitness of GC B cells in vivo. Combined loss of Crebbp and Ep300 completely abrogated GC formation, suggesting that these proteins partially compensate for each other through common transcriptional targets. This synthetic lethal interaction was retained in CREBBP-mutant DLBCL cells and could be pharmacologically targeted with selective small molecule inhibitors of CREBBP and EP300 function. These data provide proof-of-principle for the clinical development of EP300-specific inhibitors in FL and DLBCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.