Mutations in the gene encoding the KMT2D (also called MLL2) methyltransferase are highly recurrent and occur early during tumorigenesis in diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL). However, the functional consequences of KMT2D mutations and their role in lymphomagenesis are unknown. Here we show that FL/DLBCL-associated KMT2D mutations impair KMT2D enzymatic activity, leading to diminished global H3K4 methylation in germinal-center (GC) B-cells and DLBCL cells. Conditional deletion of Kmt2d early during B cell development, but not after initiation of the GC reaction, results in an increase in GC B-cells and enhances B cell proliferation in mice. In mice overexpressing BCL2, which develop GC-derived lymphomas resembling human tumors, genetic ablation of Kmt2d leads to a further increase in tumor incidence. These findings suggest that KMT2D acts as a tumor suppressor gene whose early loss facilitates lymphomagenesis by remodeling the epigenetic landscape of the cancer precursor cells. Eradication of KMT2D-deficient cells may represent a rational therapeutic approach for targeting early tumorigenic events.
Inactivating mutations of the CREBBP acetyltransferase are highly frequent in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), the two most common germinal-center (GC) derived cancers. However, the role of CREBBP inactivation in lymphomagenesis remains unclear. Here we show that CREBBP regulates enhancer/super-enhancer networks with central roles in GC/post-GC cell fate decisions, including genes involved in signal transduction by the B-cell receptor and CD40 receptor, transcriptional control of GC and plasma cell development, and antigen presentation. Consistently, Crebbp-deficient B-cells exhibit enhanced response to mitogenic stimuli and perturbed plasma cell differentiation. While GC-specific loss of Crebbp was insufficient to initiate malignant transformation, compound Crebbp-haploinsufficient/BCL2-transgenic mice, mimicking the genetics of FL and DLBCL, develop clonal lymphomas recapitulating the features of the human diseases. These findings establish CREBBP as a haploinsufficient tumor suppressor gene in GC B-cells and provide insights into the mechanisms by which its loss contributes to lymphomagenesis.
Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, (32% of cases), (24%), (18%), and (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of genetically and functionally cooperated with disruption of, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including ,, ,, and ), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.