Cancer is a deadly disease that encompasses numerous cellular modifications. Among them, alterations in glycosylation are a proven reliable hallmark of cancer, with most biomarkers used in the clinic detecting cancer-associated glycans. Despite their clear potential as therapy targets, glycans have been overlooked in drug discovery strategies. The complexity associated with the glycosylation process, and lack of specific methodologies to study it, have long hampered progress. However, recent advances in new methodologies, such as glycoengineering of cells and high-throughput screening (HTS), have opened new avenues of discovery. We envision that glycan-based targeting has the potential to start a new era of cancer therapy. In this article, we discuss the promise of cancer-associated glycosylation for the discovery of effective cancer drugs. What Are We Still Missing in Cancer Treatment?Cancer is one of the leading causes of global mortality. According to the World Health Organization, cancer was responsible for an estimated 9.6 million deaths in 2018. The traditional methods of cancer management are chemotherapy, radiation therapy, and surgery. The success of such strategies relies on several factors, such as the type of tumor and stage of the disease. Unfortunately, the majority of tumors are detected in an advanced stage, leading to treatment failure. This therapeutic failure often results in tumor recurrence and metastasis, which accounts for approximately 90% of cancer deaths [1]. HighlightsCancer is a leading cause of death, mainly due to the lack of efficacy of existing cancer treatments, such as chemotherapy and radiotherapy.Aberrant protein glycosylation is a hallmark of cancer and specific glycans actively drive tumor development and progression.
The direct detrusor relaxant effect of β-adrenoceptor agonists as a primary mechanism to improve overactive bladder symptoms has been questioned. Among other targets, activation of β-adrenoceptors downmodulate nerve-evoked acetylcholine (ACh) release, but there is insufficient evidence for the presence of these receptors on bladder cholinergic nerve terminals. Our hypothesis is that adenosine formed from the catabolism of cyclic AMP in the detrusor may act as a retrograde messenger via prejunctional A receptors to explain inhibition of cholinergic activity by β-adrenoceptors. Isoprenaline (1 µM) decreased [H]ACh release from stimulated (10 Hz, 200 pulses) human (-47 ± 5%) and rat (-38 ± 1%) detrusor strips. Mirabegron (0.1 µM, -53 ± 8%) and CL316,243 (1 µM, -37 ± 7%) mimicked isoprenaline (1 µM) inhibition, and their effects were prevented by blocking β-adrenoceptors with L748,337 (30 nM) and SR59230A (100 nM), respectively, in human and rat detrusor. Mirabegron and isoprenaline increased extracellular adenosine in the detrusor. Blockage of A receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or the equilibrative nucleoside transporters (ENT) with dipyridamole (0.5 µM) prevented mirabegron and isoprenaline inhibitory effects. Dipyridamole prevented isoprenaline-induced adenosine outflow from the rat detrusor, and this effect was mimicked by the ENT1 inhibitor, -(4-nitrobenzyl)-6-thioinosine (NBTI, 30 µM). Cystometry recordings in anesthetized rats demonstrated that SR59230A, DPCPX, dipyridamole, and NBTI reversed the decrease in the voiding frequency caused by isoprenaline (0.1-1,000 nM). Data suggest that inhibition of cholinergic neurotransmission by β-adrenoceptors results from adenosine release via equilibrative nucleoside transporters and prejunctional A-receptor stimulation in human and rat urinary bladder.
Malignant transformation of gastric cells is accompanied by the deregulated expression of glycosyltransferases leading to the biosynthesis of tumor-associated glycans such as the sialyl-Lewis X antigen (SLex). SLex presence on cell surface glycoconjugates increases the invasive capacity of gastric cancer cells and is associated with tumor metastasis. ST3Gal IV enzyme is involved in the synthesis of SLex antigen and overexpressed in gastric carcinomas. Herein, we identified the glycoproteins carrying SLex in gastric cancer cells overexpressing ST3Gal IV enzyme and evaluated their biomarker potential for gastric carcinoma.Methods: SLex modified glycoproteins were identified applying western blot and mass spectrometry. Immunoprecipitation, proximity ligation assay (PLA), E-selectin binding assay and CRISPR/cas9 knockout experiments were performed to characterize the presence of SLex on the identified glycoprotein. Protein N-glycans of the SLex protein carrier were in deep analyzed by porous-graphitized-carbon liquid-chromatography and tandem mass spectrometry glycomics. In silico expression analysis of α2-3 sialyltransferase ST3Gal IV and SLex protein carrier was performed and the conjoint expression of the SLex modified glycoproteins evaluated by immunohistochemistry and PLA in a series of gastric carcinomas.Results: Carcinoembryonic antigen (CEA; CEACAM5) was identified and validated by different methodologies as a major carrier of SLex. N-glycomics of CEA revealed that complex N-glycans are capped with α2-3 linked sialic acid (Neu5Acα2-3Galβ1-4GlcNAc). Data set analysis of ST3Gal IV and CEA showed that ST3Gal IV expression was associated with patient´s poor survival, whereas CEA did not show any prognostic value. The co-expression of both CEA and SLeX was observed in 86,3% of gastric carcinoma cases and 74,5% of the total cases displayed the conjoint CEA+SLex in situ PLA expression. This expression was associated with clinicopathological features of the tumors, including infiltrative pattern of tumor growth, presence of venous invasion and patient's poor survival. CEA immunoprecipitation from gastric carcinoma tissues also confirmed the presence of SLex.Conclusion: CEA is the major glycoprotein carrying SLex in gastric carcinoma and the conjoint detection of CEA-SLex is associated with aggressive tumor features highlighting its PLA detection as a biomarker of gastric cancer patient prognosis for theranostic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.