[1] The radiation transfer within the forest canopy plays crucial role in energy balance and turbulent transfer processes. Objective of this study is to suggest a new relation for vertical profile of photosynthetically active radiation (PAR) in case of horizontally uniform forest canopy. It is based on (i) the Lambert-Beer law relationship and (ii) new parameterization of leaf area density (LAD) profile. We have supposed that absorption coefficient μ varies with height and depends on LAD distribution. To check validity of the relation proposed, we have compared calculated values with the observations using data sets assimilated during Anglo-Brazilian Amazonian Climate Observation Study experiment at two observational sites located in Reserva Jaru and Reserva Ducke (Brazil) with different types of forest. Among all available measurements, 615 profiles observed between 08 and 18 local mean time for 72 days at 2 locations were selected. For comparison study, two more profiles based on constant-and variable-LAD approximation were introduced. Obtained results indicate that suggested relation: (i) well reproduces PAR profile within the forest in comparison with observations and (ii) shows better agreement with observations in comparison with two other profiles used in this study.
The presence of a forest strongly affects ecosystem fluxes by acting as a source or sink of mass and energy. The objective of this study was to investigate the influence of the vertical forest heterogeneity parameterization on gross primary production (GPP) simulations. To introduce a heterogeneity effect, a new method for the upscaling of the leaf level GPP is proposed. This upscaling method is based on the relationship between the leaf area index (LAI) and the leaf area density (LAD) profiles and the standard sun/shade leaf separation method. The effect of the crown shape and foliage distribution parameterization on the simulated GPP is confirmed in a comparison study between the proposed method and the standard sun/shade upscaling method. The observed values used in the comparison study are assimilated during the vegetation period on three distinguished forest eddy-covariance (EC) measurement sites chosen for the diversity of their morphological characteristics. The obtained results show (a) the sensitivity of the simulated GPP to the leaf area density profile, (b) the capability of the proposed scaling method to calculate the contribution of the different canopy layers to the entire canopy GPP, and (c) a better agreement with the observations of the simulated GPP with the proposed upscaling method compared with the standard sun/shade method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.