Agave lechuguilla waste biomass (guishe) is an undervalued abundant plant material with natural active compounds such as flavonoids. Hence, the search and conservation of flavonoids through the different productive areas have to be studied to promote the use of this agro-residue for industrial purposes. In this work, we compared the proportion of total flavonoid content (TFC) among the total polyphenolics (TPC) and described the variation of specific flavonoid profiles (HPLC-UV-MS/MS) of guishe from three locations. Descriptive environmental analysis, using remote sensing, was used to understand the phytochemical variability among the productive regions. Furthermore, the effect of extractive solvent (ethanol and methanol) and storage conditions on specific flavonoid recovery were evaluated. The highest TPC (16.46 ± 1.09 GAE/g) was observed in the guishe from region 1, which also had a lower normalized difference water index (NDWI) and lower normalized difference vegetation index (NDVI). In contrast, the TFC was similar in the agro-residue from the three studied areas, suggesting that TFC is not affected by the studied environmental features. The highest TFC was found in the ethanolic extracts (6.32 ± 1.66 QE/g) compared to the methanolic extracts (3.81 ± 1.14 QE/g). Additionally, the highest diversity in flavonoids was found in the ethanolic extract of guishe from region 3, which presented an intermedia NDWI and a lower NDVI. Despite the geo-climatic induced variations of the phytochemical profiles, the results confirm that guishe is a valuable raw material in terms of its flavonoid-enriched bioactive extracts. Additionally, the bioactive flavonoids remain stable when the conditioned agro-residue was hermetically stored at room temperature in the dark for nine months. Finally, the results enabled the establishment of both agro-ecological and biotechnological implications.
Ribosome-inactivating proteins (RIPs) are toxic due to their N-glycosidase activity catalyzing depurination at the universally conserved α-sarcin loop of the 60S ribosomal subunit. In addition, RIPs have been shown to also have other enzymatic activities, including polynucleotide:adenosine glycosidase activity. RIPs are mainly produced by different plant species, but are additionally found in a number of bacteria, fungi, algae and some mammalian tissues. This review describes the occurrence of RIPs, with special emphasis on bacterial RIPs, including the Shiga toxin and RIP in Streptomyces coelicolor recently identified in S. coelicolor. The properties of RIPs, such as enzymatic activity and targeting specificity, and how their unique biological activity could be potentially turned into medical or agricultural tools to combat tumors, viruses and fungi, are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.