Reactive gliosis is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, cellular hypertrophy, and astrocyte proliferation. The cellular and molecular mechanisms underlying this process are still largely undefined. We investigated the role of endothelin-1 (ET-1) in reactive gliosis in corpus callosum after lysolecithin (
SUMMARY Oligodendrocyte progenitor cells (OPCs) can repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. However, the OPC potential to differentiate can be prevented by inhibitory signals present in the pathological lesion environment. Identification of these signals is essential to promote OPC differentiation and lesion repair. We identified an endogenous inhibitor of remyelination, Endothelin-1 (ET-1), which is highly expressed in reactive astrocytes of demyelinated lesions. Using both gain- and loss-of-function approaches, we demonstrate that ET-1 drastically reduces the rate of remyelination. We also discovered that ET-1 acts mechanistically by promoting Notch activation in OPCs during remyelination through induction of Jagged1 expression in reactive astrocytes. Pharmacological inhibition of ET-signaling prevented Notch activation in demyelinated lesions, and accelerated remyelination. These findings reveal that ET-1 is a negative regulator of OPC differentiation and remyelination, and is potentially a novel therapeutic target to promote lesion repair in demyelinated tissue.
The termination of chemical neurotransmission in the central nervous system (CNS) involves the rapid removal of neurotransmitter from synapses. This is fulfilled by specific transport systems in neurons and glia, including those for ␥-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. Glial cells express the cloned Na ϩ /Cl Ϫ -dependent, high-affinity GABA transporters (GATs) GAT1, GAT2, and GAT3, as well as the low-affinity transporter BGT1. In situ hybridization and immunocytochemistry have revealed that each transporter shows distinct regional distribution in the brain and the retina. The neuronal vs. glial localization of the different transporters is not clear-cut, and variations according to species, neighboring excitatory synapses, and developmental stage have been reported. The localization, stoichiometry, and regulation of glial GATs are outlined, and the participation of these structures in development, osmoregulation, and neuroprotection are discussed. A decrease in GABAergic neurotransmission has been implicated in the pathophysiology of several CNS disorders, particularly in epilepsy. Since drugs which selectively inhibit glial but not neuronal GABA uptake exert anticonvulsant activity, clearly the establishment of the molecular mechanisms controlling GATs in glial cells will be an aid in the chemical treatment of several CNS-related diseases.
In the postnatal brain, oligodendrocyte progenitor cells (OPCs) arise from the subventricular zone (SVZ) and migrate into the developing white matter, where they differentiate into oligodendrocytes and myelinate axons. The mechanisms regulating OPC migration and differentiation are not fully defined. The present study demonstrates that endothelin-1 (ET-1) is an astrocyte-derived signal that regulates OPC migration and differentiation. OPCs in vivo and in culture express functional ET A and ET B receptors, which mediate ET-1-induced ERK (extracellular signal-regulated kinase) and CREB (cAMP response element-binding protein) phosphorylation. ET-1 exerts both chemotactic and chemokinetic effects on OPCs to enhance cell migration; it also prevents lineage progression from the O4 ϩ to the O1 ϩ stage without affecting cell proliferation. Astrocyte-conditioned medium stimulates OPC migration in culture through ET receptor activation, whereas multiphoton time-lapse imaging shows that selective ET receptor antagonists or anti-ET-1 antibodies inhibit OPC migration from the SVZ. Inhibition of ET receptor activity also derepresses OPC differentiation in the corpus callosum in slice cultures. Our findings indicate that ET-1 is a soluble astrocyte-derived signal that regulates OPC migration and differentiation during development.
The termination of chemical neurotransmission in the CNS involves the rapid removal of neurotransmitter from synapses by specific transport systems. Such mechanism operates for the three major amino acid neurotransmitters glutamate, γ‐aminobutyric acid (GABA) and glycine. To date, five different high‐affinity Na+‐dependent glutamate (Glu) transporters have been cloned: GLT1, GLAST, EAAC1, EAAT4 and EAAT5. The first two are expressed mainly by glial cells, and seem to be the predominant Glu transporters in the brain. A major function of Glu uptake in the nervous system is to prevent extracellular Glu concentrations from raising to neurotoxic levels in which glial transporters seem to play a critical role in protecting neurons from glutamate‐induced excitotoxicity. Under particular conditions, glial GluTs have been shown to release Glu by reversal of activity, in a Ca2+‐ and energy‐independent fashion. Furthermore, an activity of these transporters as ion channels or transducing units coupled to G‐proteins has recently been reported. The localization, stoichiometry, and regulation of glial GluTs are outlined, as well as their possible contributions to nervous system diseases as ALS, AD and ischemic damage. J. Neurosci. Res. 63:453–460, 2001. © 2001 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.