Phonocardiography has shown a great potential for developing low-cost computer-aided diagnosis systems for cardiovascular monitoring. So far, most of the work reported regarding cardiosignal analysis using multifractals is oriented towards heartbeat dynamics. This paper represents a step towards automatic detection of one of the most common pathological syndromes, so-called mitral valve prolapse (MVP), using phonocardiograms and multifractal analysis. Subtle features characteristic for MVP in phonocardiograms may be difficult to detect. The approach for revealing such features should be locally based rather than globally based. Nevertheless, if their appearances are specific and frequent, they can affect a multifractal spectrum. This has been the case in our experiment with the click syndrome. Totally, 117 pediatric phonocardiographic recordings (PCGs), 8 seconds long each, obtained from 117 patients were used for PMV automatic detection. We propose a two-step algorithm to distinguish PCGs that belong to children with healthy hearts and children with prolapsed mitral valves (PMVs). Obtained results show high accuracy of the method. We achieved 96.91% accuracy on the dataset (97 recordings). Additionally, 90% accuracy is achieved for the evaluation dataset (20 recordings). Content of the datasets is confirmed by the echocardiographic screening.
Healthy versus unhealthy heart sound computer-aided classification tools are very popular for supporting clinical decisions. In this paper a new method is proposed for the classification of heart sound recordings from a statistical standpoint without detection and localization of fundamental heart sounds (S1, S2). This study analyzes the possibility of detecting healthy heart sound signal from a large set of measurements, corresponding to different pathologies, such as aortic regurgitation, mitral regurgitation, aortic stenosis and ventricular septal defects. The proposed method employs singularity spectra analysis and long-term dependency of irregular structures. Healthy signals are firstly separated from the rest of the recordings. In the second step, the signals with a click syndrome, used here as a reference, are detected in the unhealthy group. Innocent murmurs have not been considered in this paper. Each auscultatory recording is classified into one of the following classes: healthy; click syndrome; and other heart dysfunctions. The results of the proposed method provided high recall and precision values for each of the three classes. Since the presence of additive noise may affect the classification, we also analyzed the possibility of classifying signals in such circumstances. The method was tested, verified and showed high accuracy.
Paper introduces a new approach for S1 versus S2 heart sound classification. The blanket fractal dimension is used for the first time for recognizing a heart sound candidate as S1 or S2 without the use of synchronous electrocardiogram. Even though the systole and diastole duration is not calculated for further improvement of the results, the obtained accuracy is more than 80% without any prior knowledge of patients' health issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.