Marine heatwaves (MHWs) have been documented around the world, causing widespread mortality of numerous benthic species on shallow reefs (less than 15 m depth). Deeper habitats are hypothesized to be a potential refuge from environmental extremes, though we have little understanding of the response of deeper benthic communities to MHWs. Here, we show how increasing depth moderates the response of seaweed- and coral-dominated benthic communities to an extreme MHW across a subtropical–temperate biogeographical transition zone. Benthic community composition and key habitat-building species were characterized across three depths (15, 25 and 40 m) before and several times after the 2011 Western Australian MHW to assess resistance during and recovery after the heatwave. We found high natural variability in benthic community composition along the biogeographic transition zone and across depths with a clear shift in the composition after the MHW in shallow (15 m) sites but a lot less in deeper communities (40 m). Most importantly, key habitat-building seaweeds such as
Ecklonia radiata
and
Syctothalia dorycarpa
which had catastrophic losses on shallow reefs, remained and were less affected in deeper communities. Evidently, deep reefs have the potential to act as a refuge during MHWs for the foundation species of shallow reefs in this region.
Across the globe, remote image data is rapidly being collected for the assessment of benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas. Exploiting this data is presently limited by the time it takes for experts to identify organisms found in these images. With this limitation in mind, a large effort has been made globally to introduce automation and machine learning algorithms to accelerate both classification and assessment of marine benthic biota. One major issue lies with organisms that move with swell and currents, like kelps. This paper presents an automatic hierarchical classification method to classify kelps from images collected by autonomous underwater vehicles. The proposed kelp classification approach exploits learned image representations extracted from deep residual networks. These powerful and generic features outperform the traditional off-the-shelf CNN features, which have already shown superior performance over the conventional hand-crafted features. Experi- ments also demonstrate that the hierarchical classification method outperforms the common parallel multi-class classifications by a significant margin. Experimental results are provided to illustrate the efficient applicability of the proposed method to study the change in kelp cover over time for annually repeated AUV surveys.
Ecklonia radiata is the main foundation species in Australian temperate reefs, yet little has been published on its reproduction and how this may change across its depth range (1–50+ m). In this study, we examined differences in sporophyte morphology and zoospore production during a reproductive season and across four depths (7, 15, 25, and 40 m). Additionally, we examined differences in germination rate, survival, and morphological traits of gametophytes obtained from these four depths, cultured under the same light and temperature conditions. Multivariate morphology of sporophytes differed significantly between deep (~40 m) and shallow sites (7 and 15 m), but individual morphological traits were not significantly different across depths. Total spore production was similar across depths but the peak of zoospore release was observed in February at 15 m of depth (6,154 zoospores · mm−2 of tissue) and the minimum observed in January at 7, 25, and 40 m (1,141, 987, and 214 zoospores · mm−2 of tissue, respectively). The source depth of zoospores did not have an influence in the germination rate or the survival of gametophytes, and only gametophytes sourced from 40 m sites presented significantly less surface area and number of branches. Overall, these results indicate that E. radiata’s reproductive performance does not change across its depth range and that kelp beds reproducing in deeper areas may contribute to the replenishment of their shallow counterparts. We propose that deep kelps may constitute a mechanism of resilience against climate change and anthropogenic disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.