Visual processing for perception and for action is thought to be mediated by two specialized neural pathways. Using a visuomotor decision-making task, we show that participants differentially utilized online perceptual decision-making in reaching and interception and that eye movements necessary for perception influenced motor decision strategies. These results provide evidence that task complexity modulates how pathways processing perception versus action information interact during the visual control of movement.
When stopping a closing door or catching an object, humans process the motion of inertial objects and apply reactive limb force over short period to interact with them. One way in which the visual system processes motion is through extraretinal signals associated with smooth pursuit eye movements (SPEM). We conducted three experiments to investigate how SPEM contributes to anticipatory and reactive hand force modulation when interacting with a virtual object moving in the horizontal plane. Participants held a robotic manipulandum and attempted to stop an approaching simulated object by applying a force impulse (area under force-time curve) that matched the objects virtual momentum upon contact. We manipulated the objects momentum by varying either its virtual mass or its speed under free gaze or fixed gaze conditions. We examined gaze variables, timing of hand motor responses, anticipatory force control, and overall task performance. Our results show that extraretinal signals associated with SPEM are important for anticipatory modulation of hand force prior to contact. However, SPEM did not seem to affect the timing of the motor response or the task performance. Together, these results suggest that SPEM are important for anticipatory control of hand force prior to contact and may also play a critical role in anticipatory stabilization of limb posture when humans interact with moving objects.
An important window into sensorimotor function is how we catch moving objects. Studies that examined catching of free-falling objects report that the timing of the motor response is independent of the momentum of the projectile, whereas the motor response amplitude scales with projectile momentum. However, this pattern may not be a general strategy of catching since objects accelerate under gravity in a characteristic manner (unlike object motion in the horizontal plane) and the human visual motion-processing system is not adept at encoding acceleration. Accordingly, we developed a new experimental paradigm using a robotic manipulandum and augmented reality where participants stabilized against the impact of a virtual object moving at constant velocity in the horizontal plane. Participants needed to apply an impulse that mirrored the object momentum to bring it to rest and received explicit feedback on their performance. In different blocks, object momentum was varied by an increase in its speed or mass. In contrast to previous reports on free falling objects, we observed that increasing object speed caused earlier onset of arm muscle activity and limb force relative to the impending time to contact. Also, arm force increased as a function of target momentum linked to changes in speed or mass. Our results demonstrate velocity-dependent timing to catch objects and a complex pattern of scaling to momentum.
Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual decision-making are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in goal-directed actions. Previously, we have shown that in healthy adults, task demands influence movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit larger declines in interactions between the two streams during demanding motor tasks. Older adults (n=15) and young controls (n=26) performed reaching or interception movements towards virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.