Numerous innovative smart grid technologies are deployed in modern power systems, making a power system a typical cyber-physical system (CPS). The increasing coupling between a physical power system and its communication network requires a smart grid simulator to run in a cyberphysical environment for cyber security research. In addition, smart grid technologies introduce numerous access points to the communication network, making cyber security a big concern in smart grid planning and operation. In this paper, a simple real time CPS test bed, implemented in RTDS and OPNET, is discussed. The setup of the test bed is introduced. Results of a case study simulated in the test bed to study the impact of cyber attacks on system transient stability are presented. The simple test bed was capable of accurately modelling a smart grid while providing user-friendly modeling experience.
A power system is a complex cyber-physical system whose security is critical to its function. A major challenge is to model, analyse and visualise the communication backbone of the power systems concerning cyber threats. To achieve this, the design and evaluation of a cyber-physical power system (CPPS) testbed called Resilient Energy Systems Lab (RESLab) are presented to capture realistic cyber, physical, and protection system features. RESLab is architected to be a fundamental platform for studying and improving the resilience of complex CPPS to cyber threats. The cyber network is emulated using Common Open Research Emulator (CORE), which acts as a gateway for the physical and protection devices to communicate. The physical grid is simulated in the dynamic time frame using Power World Dynamic Studio (PWDS). The protection components are modelled with both PWDS and physical devices including the SEL Real-Time Automation Controller (RTAC). Distributed Network Protocol 3 (DNP3) is used to monitor and control the grid. Then, the design is exemplified and the tools are validated. This work presents four case studies on cyberattack and defence using RESLab, where we demonstrate false data and command injection using Man-in-the-Middle and Denial of Service attacks and validate them on a large-scale synthetic electric grid.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
To understand security vulnerabilities of communication protocols used in power systems, a real-time framework can be developed to conduct vulnerability studies. The framework should implement protection mechanisms against vulnerabilities and study their effectiveness. In this paper, a realtime cyber-physical framework or test bed is presented. It integrates a real-time power system simulator and a communication system simulator to study the cyber and physical system vulnerabilities in smart power grids. The power system simulation is implemented using the Real-Time Digital Simulator (RTDS®) power grid simulator, with LabVIEW and PXI modules that simulate the supervisory control and data acquisition (SCADA) system and intelligent electronic devices (IEDs). The communication system simulation is implemented using Opnet's System-in-the-Loop (SITL) simulator and open source Linux tools and servers. Results of two cyber-attacks on the Modbus/TCPprotocol are discussed and improvements to the test bed for protocol attack detection and mitigation are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.