The human killer cell immunoglobulin-like receptor (KIR) locus comprises two groups of KIR haplotypes, termed A and B. These are present in all human populations but with different relative frequencies, suggesting they have different functional properties that underlie their balancing selection. We studied the genomic organization and functional properties of the alleles of the inhibitory and activating HLA-C receptors encoded by KIR haplotypes. Because every HLA-C allotype functions as a ligand for KIR, the interactions between KIR and HLA-C dominate the HLA class I mediated regulation of human NK cells. The C2 epitope is recognized by inhibitory KIR2DL1 and activating KIR2DS1, whereas the C1 epitope is recognized by inhibitory KIR2DL2 and KIR2DL3. This study shows that the KIR2DL1 and 2DS1 and KIR2DL2/3 alleles form distinctive phylogenetic clades that associate with specific KIR haplotypes. KIR A haplotypes are characterized by KIR2DL1 alleles that encode strong inhibitory C2 receptors and KIR2DL3 alleles encoding weak inhibitory C1 receptors. In striking contrast, KIR B haplotypes are characterized by KIR2DL1 alleles that encode weak inhibitory C2 receptors and KIR2DL2 alleles encoding strong inhibitory C1 receptors. The wide-ranging properties of KIR allotypes arise from substitutions throughout the KIR molecule. Such substitutions can influence cell-surface expression, as well as the avidity and specificity for HLA-C ligands. Consistent with the crucial role of inhibitory HLA-C receptors in self-recognition, and natural killer cell education and response, most KIR haplotypes have both a functional C1 and C2 receptor, despite the considerable variation that occurs in ligand recognition and surface expression.
Modulating natural killer cell functions in human immunity and reproduction are diverse interactions between the killer cell immunoglobulin-like receptors (KIR) of Natural Killer (NK) cells and HLA class I ligands on the surface of tissue cells. Dominant interactions are between KIR2DL1 and the C2 epitope of HLA-C and between KIR2DL2/3 and the C1 epitope of HLA-C. KhoeSan hunter-gatherers of Southern Africa represent the earliest population divergence known and are the most genetically diverse indigenous people, qualities reflected in their KIR and HLA genes. Of the ten KhoeSan KIR2DL1 alleles, KIR2DL1*022 and KIR2DL1*026 likely originated in the KhoeSan, and later were transmitted at low frequency to the neighboring Zulus through gene flow. These alleles arose by point mutation from other KhoeSan KIR2DL1 alleles that are more widespread globally. Mutation of KIR2DL1*001 gave rise to KIR2DL1*022, causing loss of C2 recognition and gain of C1 recognition. This makes KIR2DL1*022 a more avid and specific C1 receptor than any KIR2DL2/3 allotype. Mutation of KIR2DL1*012 gave rise to KIR2DL1*026, causing premature termination of translation at the end of the transmembrane domain. This makes KIR2DL1*026 a membrane-associated receptor that lacks both a cytoplasmic tail and signaling function. At higher frequencies than their parental allotypes, the combined effect of the KhoeSan-specific KIR2DL1*022 and KIR2DL1*026 is to reduce the frequency of strong inhibitory C2 receptors and increase the frequency of strong inhibitory C1 receptors. Because interaction of KIR2DL1 with C2 is associated with risk of pregnancy disorder, these functional changes are potentially advantageous. Whereas all other KhoeSan KIR2DL1 alleles are present on a wide diversity of centromeric KIR haplotypes, KIR2DL1*026 is present on a single KIR haplotype and KIR2DL1*022 is present on two very similar haplotypes. The high linkage disequilibrium across their haplotypes is consistent with a recent emergence for these KIR2DL1 alleles that have distinctive functions.
Nonclassical MHC class Ib (class Ib) genes are heterogeneous genes encoding molecules that are structurally similar to classical MHC class Ia molecules but with limited tissue distribution and polymorphism. Mammalian class Ib genes have diverse and often uncharacterized functions, and because of their rapid rate of evolution, class Ib phylogeny is difficult to establish. We have conducted an extensive genomic, molecular, and phylogenetic characterization of class Ib genes in two Xenopodinae amphibian species of different genera that diverged from a common ancestor as long ago as primates and rodents (~65 million years). In contrast with the unsteadiness of mammalian class Ib genes, our results reveal an unusual degree of conservation of most Xenopodinae class Ib gene lineages, including a novel monogenic lineage represented by the divergent Xenopus laevis XNC10 gene and its unequivocal Silurana (Xenopus) tropicalis orthologue, SNC10. The preferential expression of this gene lineage by thymocytes themselves from the onset of thymic organogenesis is consistent with a specialized role of class Ib in early T cell development and suggests such a function is conserved in all tetrapods.
In jawed vertebrates, the heterogeneous nonclassical MHC class Ib (class Ib) gene family encodes molecules structurally similar to classical MHC class Ia (class Ia) but with more limited tissue distribution and lower polymorphism. In mammals, class Ib gene products are involved in stress responses, malignancy and differentiation of intrathymic CD8 T cells. The frog Xenopus laevis possesses at least 20 class Ib genes (XNCs), and 9 subfamilies have been defined so far. We have characterized two novel subfamilies, XNC10 and XNC11. XNC10 is phylogenetically and structurally distinct from both class Ia and other XNC genes. Besides thymic lymphoid tumors, XNC10 is preferentially expressed by circulating T cells and thymocytes of the CD8 lineage both in adult and in larvae from the onset of thymus organogenesis. XNC11 is expressed only by thymocytes and upregulated by several thymic lymphoid tumors. These data provide the first evidence of the expression of any class Ib genes in Xenopus larvae, and suggests evolutionary relationships between certain class Ib genes, malignancy and CD8 T cell ontogeny.
Summary HLA-B*46:01 was formed by an intergenic mini-conversion, between HLA-B*15:01 and HLA-C*01:02, in South-East Asia during the last 50,000 years and has since become the most common HLA-B allele in the region. A functional effect of the mini-conversion was introduction of the C1 epitope into HLA-B*46:01, making it an exceptional HLA-B allotype that is recognized by the C1-specific natural killer cell receptor KIR2DL3. High-resolution mass spectrometry showed that HLA-B*46:01 has a low diversity peptidome that is distinct from those of its parents. A minority (21%) of HLA-B*46:01 peptides, with common C-terminal characteristics, form ligands for KIR2DL3. The HLA-B*46:01 peptidome is predicted to be enriched for peptide antigens derived from Mycobacterium leprae. Overall, the results indicate that the distinctive peptidome and functions of HLA-B*46:01 provide carriers with resistance to leprosy, which drove its rapid rise in frequency in South-East Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.