Giant cell arteritis (GCA) is the most common form of vasculitis in individuals older than 50 years in Western countries. To shed light onto the genetic background influencing susceptibility for GCA, we performed a genome-wide association screening in a well-powered study cohort. After imputation, 1,844,133 genetic variants were analyzed in 2,134 case subjects and 9,125 unaffected individuals from ten independent populations of European ancestry. Our data confirmed HLA class II as the strongest associated region (independent signals: rs9268905, p = 1.94 × 10, per-allele OR = 1.79; and rs9275592, p = 1.14 × 10, OR = 2.08). Additionally, PLG and P4HA2 were identified as GCA risk genes at the genome-wide level of significance (rs4252134, p = 1.23 × 10, OR = 1.28; and rs128738, p = 4.60 × 10, OR = 1.32, respectively). Interestingly, we observed that the association peaks overlapped with different regulatory elements related to cell types and tissues involved in the pathophysiology of GCA. PLG and P4HA2 are involved in vascular remodelling and angiogenesis, suggesting a high relevance of these processes for the pathogenic mechanisms underlying this type of vasculitis.
Giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P = 7.54E-07; ORGCA = 1.19, ORTAK = 1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA = 5.52E-04, ORGCA = 1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus.
Scientific Reports 7: Article number: 43953; published online: 09 March 2017; updated: 05 April 2017 In this Article, Javier Martin is incorrectly listed as being affiliated with “Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada 18016, Spain”. The correct affiliation is listed below:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.