Surface tension measurements were performed by the Wilhelmy plate method. Measured systems included pure heptane, decane, hexadecane, eicosane, and some of their binary mixtures at temperatures from 293.15 K to 343.15 K with an average absolute deviation of 1.6%. The results were compared with a new corresponding states model. The average absolute deviation was found to be 1.0%.
The solubilities of tetracycline hydrochloride, moxifloxacin hydrochloride, and ciprofloxacin hydrochloride were measured in several solvents, such as water, ethanol, 2-propanol, and acetone, in the temperature range of 293.15-323.15 K for ciprofloxacin.HCl and moxifloxacin.HCl and 288.15-310.15 K for tetracycline. All the antibiotics have the same solubility order; that is, they are more soluble in water than in ethanol, and more soluble in ethanol than in 2-propanol and acetone. The solubility in water is ∼3 orders of magnitude higher than that in acetone. The modeling of the experimental solid-liquid equilibria (SLE) data, using the NRTL and UNIQUAC models, proves that these models can correlate the solubility of studied antibiotics satisfactorily in the temperature range for which experimental data are available, with the UNIQUAC model generally being slightly superior to the NRTL model, when only two adjustable parameters are used for each binary system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.