The LG/J x SM/J advanced intercross line of mice (LG x SM AIL) is a multigenerational outbred population. High minor allele frequencies, a simple genetic background, and the fully sequenced LG and SM genomes make it a powerful population for genome-wide association studies. Here we use 1,063 AIL mice to identify 126 significant associations for 50 traits relevant to human health and disease. We also identify thousands of cis- and trans-eQTLs in the hippocampus, striatum, and prefrontal cortex of ~200 mice. We replicate an association between locomotor activity and Csmd1, which we identified in an earlier generation of this AIL, and show that Csmd1 mutant mice recapitulate the locomotor phenotype. Our results demonstrate the utility of the LG x SM AIL as a mapping population, identify numerous novel associations, and shed light on the genetic architecture of mammalian behavior.
Muscle bulk in adult healthy humans is highly variable even after accounting for height, age and sex. Low muscle mass, due to fewer and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study (GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-age (38-49 years) individuals from the UK Biobank (UKB) we found 182 loci associated with ALM (P<5x10-8). We replicated associations for 78% of these loci (P<5x10-8) with ALM in a population of 181,862 elderly (60-74 years) individuals from UKB. We also conducted a GWAS on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J) which identified 23 quantitative trait loci. 38 positional candidates distributed across 5 loci overlapped between the two species. In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.