Chronic neck pain is one of today’s most prevalent pathologies. The International Classification of Diseases categorizes four subgroups based on patients’ associated symptoms. However, this classification does not encompass upper cervical spine dysfunction. The aim is to compare the short- and mid-term effectiveness of adding a manual therapy approach to a cervical exercise protocol in patients with chronic neck pain and upper cervical spine dysfunction. Fifty-eight subjects with chronic neck pain and upper cervical spine dysfunction were recruited (29 = Manual therapy + Exercise; 29 = Exercise). Each group received four 20-min sessions, one per week during four consecutive weeks, and a home exercise regime. Upper flexion and flexion-rotation test range of motion, neck disability index, craniocervical flexion test, visual analogue scale, pressure pain threshold, global rating of change scale, and adherence to self-treatment were assessed at the beginning, end of the intervention and at 3- and 6-month follow-ups. The Manual therapy + Exercise group statistically improved short- and medium-term in all variables compared to the Exercise group. Four 20-min sessions of Manual therapy + Exercise along with a home-exercise program is more effective in the short- to mid-term than an exercise protocol and a home-exercise program for patients with chronic neck pain and upper cervical dysfunction.
This study compares upper cervical spine range of motion (ROM) in the three cardinal planes before and after occiput-atlas (C0–C1) stabilization. After the dissection of the superficial structures to the alar ligament and the fixation of C2, ten cryopreserved upper cervical columns were manually mobilized in the three cardinal planes of movement without and with a screw stabilization of C0–C1. Upper cervical ROM and mobilization force were measured using the Vicon motion capture system and a load cell respectively. The ROM without C0–C1 stabilization was 19.8° ± 5.2° in flexion and 14.3° ± 7.7° in extension. With stabilization, the ROM was 11.5° ± 4.3° and 6.6° ± 3.5°, respectively. The ROM without C0–C1 stabilization was 4.7° ± 2.3° in right lateral flexion and 5.6° ± 3.2° in left lateral flexion. With stabilization, the ROM was 2.3° ± 1.4° and 2.3° ± 1.2°, respectively. The ROM without C0–C1 stabilization was 33.9° ± 6.7° in right rotation and 28.0° ± 6.9° in left rotation. With stabilization, the ROM was 28.5° ± 7.0° and 23.7° ± 8.5° respectively. Stabilization of C0–C1 reduced the upper cervical ROM by 46.9% in the sagittal plane, 55.3% in the frontal plane, and 15.6% in the transverse plane. Also, the resistance to movement during upper cervical mobilization increased following C0–C1 stabilization.
In this study of nearside oblique impact loading, the PMHS exhibited kinematics characterized by reduced torso pitching and increased lateral head excursion as compared to previous frontal impact results. These kinematics resulted in potential cervical and thoracic spinal injuries and in complete, displaced fractures of the lateral and posterior aspects of the rib cage. Though this is a limited number of subjects, it shows the necessity of further understanding of the kinematics of occupants exposed to this loading mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.