Due to the extrusion manufacturing process, hollow‐core units in New Zealand do not have transverse shear reinforcement. The prestressing strands will not be fully developed near the ends of the hollow‐core units, which significantly affects the shear capacity and makes them prone to transverse and web cracking under deformation demands. In addition, initial end slip of the strands caused during cutting of the units in the production process may exacerbate this effect. This vulnerability of hollow‐core slabs was remarked during the 2016 Kaikōura earthquake, where an estimated 22% of the damaged buildings presented transverse cracking to hollow‐core units, sometimes accompanied by evident web cracking. The observed damaged, produced by earthquake‐imposed deformations, highlighted the urgency to advance the understanding of the behavior of hollow‐core floors. Subsequently, an experimental testing program was initiated to investigate the properties of extruded concrete and the shear strength of hollow‐core units under different shear span‐to‐depth or aspect ratios. The 200 mm deep specimens were loaded well beyond the peak shear force to study the postpeak behavior of the hollow‐core units. Additionally, the present study evaluates the effect of initial end slip of the prestressing strands on the pre and postpeak capacity of the units. The results obtained are compared against the formulations provided by commonly used design standards such as the New Zealand concrete standard NZS3101:2006, the ACI 318‐19, as well as the fib Model Code 2010 and the BS EN 1168:2005.
Even if precast pre-stressed hollow-core (PPHC) slabs are usually designed as simply supported elements, continuity with the supporting beam may exist when constructed together with a reinforced concrete topping and continuity reinforcing bars. During an earthquake (and possibly other lateral load), this continuity may result in bending moments being induced close to the supports as the buildings sway laterally. The response of precast floors to earthquake-induced demands has been addressed by past research. However, further investigation is required to improve understanding of several aspects of precast floor behaviour either revealed or emphasized by recent earthquakes in New Zealand. This paper proposes a mechanics-based modelling approach for the analysis of PPHC slab-to-beam seating connections. The model has been calibrated against existing test data to predict the failure of a PPHC slab under negative bending moments. The numerical outcomes allow comparison of the moment–drift response, principal tensile stresses, and crack progression during loading. The developed modelling approach will allow future studies to exhaustively investigate all aspects of precast floor behaviour by varying the properties and geometry of the PPHC seating connection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.