Abstract:We evaluated effects of corridors between forest fragments surrounded by pastures in tropical Mexico. We used experimental translocations and capture–recapture data to measure the proportion of birds returning and time to return after translocation between connected and unconnected patches (five replicates for each treatment). Depending on each species’ degree of forest dependence (forest-restricted and forest-unrestricted species), we assigned birds to two groups to evaluate influence of species characteristics on effects of corridors on movement. Birds translocated between connected patches (n = 75) were seven times more likely to be recaptured in their original capture site when compared with birds translocated between unconnected patches (n = 109). Effects differed among the two species groups. In the presence of corridors, 46% of forest-unrestricted birds returned to the capture site while only 5% returned between unconnected patches. Forest-restricted birds showed similar results, but were only twice as likely to return to a connected capture site. Birds translocated between unconnected patches took longer to return than birds translocated between connected patches. The strong positive effect of corridors on movement, even for forest-unrestricted species, suggests that forested corridors facilitate bird movement and help maintain connectivity even in this highly fragmented landscape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.