Increasing evidence suggests that the infectiousness of patients for the sand fly vector of visceral leishmaniasis is linked to parasites found in the skin. Using a murine model that supports extensive skin infection with Leishmania donovani, spatial analyses at macro-(quantitative PCR) and micro-(confocal microscopy) scales indicate that parasite distribution is markedly skewed. Mathematical models accounting for this heterogeneity demonstrate that while a patchy distribution reduces the expected number of sand flies acquiring parasites, it increases the infection load for sand flies feeding on a patch, increasing their potential for onward transmission. Models representing patchiness at both macro- and micro-scales provide the best fit with experimental sand fly feeding data, pointing to the importance of the skin parasite landscape as a predictor of host infectiousness. Our analysis highlights the skin as a critical site to consider when assessing treatment efficacy, transmission competence and the impact of visceral leishmaniasis elimination campaigns.
Visceral leishmaniasis is associated with significant changes in hematological function but the mechanisms underlying these changes are largely unknown. In contrast to naïve mice, where most long-term hematopoietic stem cells (LT-HSCs; LSK CD150+ CD34- CD48- cells) in bone marrow (BM) are quiescent, we found that during Leishmania donovani infection most LT-HSCs had entered cell cycle. Loss of quiescence correlated with a reduced self-renewal capacity and functional exhaustion, as measured by serial transfer. Quiescent LT-HSCs were maintained in infected RAG2 KO mice, but lost following adoptive transfer of IFNγ-sufficient but not IFNγ-deficient CD4+ T cells. Using mixed BM chimeras, we established that IFNγ and TNF signalling pathways converge at the level of CD4+ T cells. Critically, intrinsic TNF signalling is required for the expansion and/or differentiation of pathogenic IFNγ+CD4+ T cells that promote the irreversible loss of BM function. These findings provide new insights into the pathogenic potential of CD4+ T cells that target hematopoietic function in leishmaniasis and perhaps other infectious diseases where TNF expression and BM dysfunction also occur simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.