Most bacteria alternate between a free living planktonic lifestyle and the formation of structured surface-associated communities named biofilms. The transition between these two lifestyles requires a precise and timely regulation of the factors involved in each of the stages that has been likened to a developmental process. Here we characterize the involvement of the transcriptional regulator FleQ and the second messenger cyclic diguanylate in the coordinate regulation of multiple functions related to motility and surface colonization in Pseudomonas putida. Disruption of fleQ caused strong defects in flagellar motility, biofilm formation and surface attachment, and the ability of this mutation to suppress multiple biofilm-related phenotypes associated to cyclic diguanylate overproduction suggests that FleQ mediates cyclic diguanylate signaling critical to biofilm growth. We have constructed a library containing 94 promoters potentially involved in motility and biofilm development fused to gfp and lacZ, screened this library for FleQ and cyclic diguanylate regulation, and assessed the involvement of alternative σ factors σN and FliA in the transcription of FleQ-regulated promoters. Our results suggest a dual mode of action for FleQ. Low cyclic diguanylate levels favor FleQ interaction with σN-dependent promoters to activate the flagellar cascade, encompassing the flagellar cluster and additional genes involved in cyclic diguanylate metabolism, signal transduction and gene regulation. On the other hand, characterization of the FleQ-regulated σN- and FliA-independent PlapA and PbcsD promoters revealed two disparate regulatory mechanisms leading to a similar outcome: the synthesis of biofilm matrix components in response to increased cyclic diguanylate levels.
SummaryAtzR is a LysR-type regulator responsible for activation of the cyanuric acid utilization operon atzDEF. AtzR binds the PatzDEF promoter region at a strong recognition element, designated the repressor binding site, and a weaker binding determinant, the activator binding site (ABS). AtzR activates transcription in response to two dissimilar signals, nitrogen limitation and cyanuric acid. In the present work we analyse the structure and function of the cis-acting elements involved in AtzR activation of atzDEF. Hydroxyl radical footprinting assays revealed that the ABS is composed of three functional subsites spaced at one helix-turn intervals. Two modes of interaction with the ABS are detected in vitro: AtzR binds at the ABS-2 and ABS-3 subsites in the absence of inducer, and relocates to interact with the ABS-1 and ABS-2 subsites in the presence of cyanuric acid. In vivo mutational analysis indicates that ABS-1 and ABS-2 are required for full PatzDEF activation in all conditions. In contrast, ABS-3 acts as a 'subunit trap' that hinders productive AtzR interactions with ABS-1 and ABS-2. Our results strongly suggest an activation model in which cyanuric acid and nitrogen limitation cooperate to reposition AtzR from an inactive, ABS-3 bound configuration to an active, ABS-1-and ABS-2-bound configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.