Abstract-The cloud based delivery model for IT resources is revolutionizing the IT industry. Despite the marketing hype around "the cloud", the paradigm itself is in a critical transition state from the laboratories to mass market. Many technical and business aspects of cloud computing need to mature before it is widely adopted for corporate use. For example, the inability to seamlessly burst between internal cloud and external cloud platforms, termed cloud bursting, is a significant shortcoming of current cloud solutions. Furthermore, the absence of a capability that would allow to broker between multiple cloud providers or to aggregate them into a composite service inhibits the free and open competition that would help the market mature. This paper describes the concepts of cloud bursting and cloud brokerage and discusses the open management and security issues associated with the two models. It also presents a possible architectural framework capable of powering the brokerage based cloud services that is currently being developed in the scope of OPTIMIS, an EU FP7 project.
The Internet of Things (IoT) has empowered the development of a plethora of new services, fueled by the deployment of devices located at the edge, providing multiple capabilities in terms of connectivity as well as in data collection and processing. With the inception of the Fog Computing paradigm, aimed at diminishing the distance between edge-devices and the IT premises running IoT services, the perceived service latency and even the security risks can be reduced, while simultaneously optimizing the network usage. When put together, Fog and Cloud computing (recently coined as fog-to-cloud, F2C) can be used to maximize the advantages of future computer systems, with the whole greater than the sum of individual parts. However, the specifics associated with cloud and fog resource models require new strategies to manage the mapping of novel IoT services into the suitable resources. Despite few proposals for service offloading between fog and cloud systems are slowly gaining momentum in the research community, many issues in service placement, both when the service is ready to be executed admitted as well as when the service is offloaded from Cloud to Fog, and vice-versa, are new and largely unsolved. In this paper, we provide some insights into the relevant features about service placement in F2C scenarios, highlighting main challenges in current systems towards the deployment of the next-generation IoT services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.