Background:Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association.Objectives:Our main aim was to study the association between long-term air pollution exposure and DNA methylation.Methods:We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate matter with aerodynamic diameter ≤2.5μm; PM10, particulate matter with aerodynamic diameter ≤10μm) and PM2.5absorbance, indicator of elemental carbon content (estimated with land-use-regression models) with DNA methylation in whole blood (Illumina® HumanMethylation450K BeadChip). Replication of the top hits was attempted in two independent samples from the population-based Cooperative Health Research in the Region of Augsburg studies (KORA).Results:Depending on the p-value threshold used, we found significant associations between NO2 exposure and DNA methylation for seven CpG sites (Bonferroni corrected threshold p<1.19×10−7) or for 4,980 CpG sites (False Discovery Rate<0.05). The top associated CpG site was annotated to the PSMB9 gene (i.e., cg04908668). None of the seven Bonferroni significant CpG-sites were significantly replicated in the two KORA-cohorts. No associations were found for PM exposure.Conclusions:Long-term NO2 exposure was genome-wide significantly associated with DNA methylation in the identification cohort but not in the replication cohort. Future studies are needed to further elucidate the potential mechanisms underlying NO2-exposure–related respiratory disease. https://doi.org/10.1289/EHP2045
Exposure to fine particles may trigger pulmonary inflammation/systemic inflammation. The objective of this study was to investigate the association between daily individual exposure to air pollutants and airway inflammation and disease activity in childhood-onset systemic lupus erythematosus (cSLE) patients. A longitudinal panel study was carried out in 108 consecutive appointments with cSLE patients without respiratory diseases. Over four consecutive weeks, daily individual measures of nitrogen dioxide (NO), fine particulate matter (PM), ambient temperature, and humidity were obtained. This cycle was repeated every 2.5 months along 1 year, and cytokines of exhaled breath condensate-EBC [interleukins (IL) 6, 8, 17 and tumoral necrose factor-α (TNF-α)], fractional exhaled NO (FeNO), and disease activity parameters were collected weekly. Specific generalized estimation equation models were used to assess the impact of these pollutants on the risk of Systemic Lupus Erythematous Disease Activity Index 2000 (SLEDAI-2K) ≥ 8, EBC cytokines, and FeNO, considering the fixed effects for repetitive measurements. The models were adjusted for inflammatory indicators, body mass index, infections, medication, and weather variables. An IQR increase in PM 4-day moving average (18.12 μg/m) was associated with an increase of 0.05 pg/ml (95% CI 0.01; 0.09, p = 0.03) and 0.04 pg/ml (95% CI 0.02; 0.06, p = 0.01) in IL-17 and TNF-α EBC levels, respectively. Additionally, a short-term effect on FeNO was observed: the PM 3-day moving average was associated with a 0.75 ppb increase (95% CI 0.38; 1.29, p = 0.03) in FeNO. Also, an increase of 1.47 (95% CI 1.10; 1.84) in the risk of SLEDAI-2K ≥ 8 was associated with PM 7-day moving average. Exposure to inhalable fine particles increases airway inflammation/pulmonary and then systemic inflammation in cSLE patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.